K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)

Thay x = 11 ta có:

\(A=11^{100}-12.11^{99}+12.11^{98}-...-12.11^3+12.11^2-12.11+12\)

\(=11^{100}-12\left(11^{99}-11^{98}+11^{97}-...+11^3-11^2+11\right)+12\)

Đặt \(B=11^{99}-11^{98}+...+11\)

\(\Rightarrow11B=11^{100}-11^{99}+...+11^2\)

\(\Rightarrow12B=11^{100}+11\)

\(\Rightarrow B=\dfrac{11^{100}+11}{12}\)

Từ đó, \(A=11^{100}-12.\dfrac{11^{100}+11}{12}+12\)

\(=11^{100}-11^{100}-11+12=1\)

Vậy A = 1

29 tháng 4 2017

Ta có: \(x=11\Rightarrow x+1=12\)

Khi đó, ta được:

\(A=x^{100}-12x^{99}+12x^{98}-12x^{97}+...-12x^3+12x^2-12x+12\)

\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-\left(x+1\right)x^{97}+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+12\)

\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-x^{98}-x^{97}+...-x^4-x^3+x^3+x^2-x^2-x+12\)

\(=\left(x^{100}-x^{100}\right)-\left(x^{99}-x^{99}\right)+\left(x^{98}-x^{98}\right)-...-\left(x^3-x^3\right)+\left(x^2-x^2\right)-x+12\)

\(=0-x+12=0-11+12=-11+12=1\)

Vậy tại x=11 thì A=1

Tại x=11

\(\Rightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)

\(f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)

\(f\left(x\right)=x-1\)

\(f\left(x\right)=10\)

2 tháng 4 2018

\(x=11\Leftrightarrow12=x+1\)

\(f\left(x\right)=x^{17}-12x^{16}+12x^{15}-12x^{14}+........+12x-1\)

\(\Leftrightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-.......+\left(x+1\right)x-1\)

\(\Leftrightarrow f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-.....+x^2+x-1\)

\(\Leftrightarrow f\left(x\right)=x-1\)

\(x=11\)

\(\Leftrightarrow f\left(11\right)=11-1=10\)

Vậy \(f\left(11\right)=10\)

18 tháng 5 2018

Để \(M=5xy^3+4x^2y^2-12x^3y\\ \) và  \(A=x\left(x^3+12x^2y-5y^3\right)\) ko âm

\(\Rightarrow\)\(M+A\)cũng đồng thời >0

\(\Rightarrow\)\(M+A=\left(5xy^3+4x^2y^2-12x^3y\right)+\left(x^4+12x^3y-5y^3x\right)\)

\(\Rightarrow\)\(M+A=\left(5xy^3-5xy^3\right)-\left(12x^3y-12x^{3y}\right)+\left(x^4+4x^2y^2\right)\)

\(\Rightarrow M+A=x^4+4x^2y^2\)

Mà \(x^4\ge0\) \(;4x^2y^2\ge0\)

\(\Rightarrow\)\(x^4+4x^2y^2\ge0\)

\(\Rightarrow\)\(M+A\ge0\)

6 tháng 7 2016

\(a,-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x^3-3.x^2.1+3.x.1^2-1^3\right)\)

\(=-\left(x-1\right)^3\)

\(b,8-12x+6x^2-x^3=2^3-3.2^2.x+3.2.x^2-x^3=\left(2-x\right)^3\)

\(a,x^3+12x^2+48x+64=x^3+3.x^2.4+3.x.4^2+4^3=\left(x+4\right)^3=\left(6+4\right)^3=10^3=1000\)

\(b,x^3-6x^2+12x-8=x^3-3.x^2.2+3.x.2^2-2^3=\left(x-2\right)^3=\left(22-2\right)^3=20^3=8000\)

NV
23 tháng 3 2019

Câu 1:

Với \(x=11\Rightarrow12=x+1\) ta có: \(x^{17}-12x^{16}+12x^{15}-....+12x-1\)

\(=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-\left(x+1\right)x^{14}+...+\left(x+1\right)x-1\)

\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...-x^3-x^2+x^2+x+1\)

\(=x+1\)

\(=12\)

NV
23 tháng 3 2019

Câu 2:

Do \(VT>0\Rightarrow VP>0\Rightarrow x>0\Rightarrow\) tất cả các biểu thức dưới dấu trị tuyệt đối đều dương, phương trình trở thành:

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(\Leftrightarrow100x+\frac{1+2+3+...+100}{101}=101x\)

\(\Rightarrow x=\frac{100.101}{2.101}=50\)

Câu 3:

\(A=n^3-n+3\left(n^2-1\right)=n\left(n^2-1\right)+3\left(n^2-1\right)\)

\(A=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Do n lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow A=\left(2k+4\right).2k.\left(2k+2\right)=8k.\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6

\(\Rightarrow A⋮\left(8.6\right)\Rightarrow A⋮48\)

28 tháng 5 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

Do đó:

+)\(\frac{12x-15y}{7}=0\Rightarrow12-15y=0\Rightarrow12x=15y\Rightarrow3.4x=3.5y\Rightarrow4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\left(1\right)\)

+)\(\frac{20z-12x}{9}=0\Rightarrow20z-12x=0\Rightarrow20z=12x\Rightarrow4.5z=4.3x\Rightarrow5z=3x\Rightarrow\frac{x}{5}=\frac{z}{3}\left(2\right)\)

Từ (1) và (2)

=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)

Do đó:

+)\(\frac{x}{5}=4\Rightarrow x=20\)

+)\(\frac{y}{4}=4\Rightarrow y=16\)

+)\(\frac{z}{3}=4\Rightarrow z=12\)

Vậy (x;y;z)=(20;16;12)

26 tháng 3 2021

Ta có : 

\(3-2\left(8x-3\right)-9x^2-12x+4x^2\)

\(=3-16x+6-9x^2-12x+4x^2=-5x^2+9-28x\)

Thay x = -2 vào biểu thức trên ta được : 

\(-5\left(-2\right)^2+9-28\left(-2\right)=-20+9+56=-11+56=45\)