Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
30A=30/2*32+30/3*33+30/4*34=1/2-1/32+1/3-1/33+1/4-1/34=99/100
A=3,3/100
a) Tính giá trị của A. Khi x=\(\frac{1}{4}\)là :
\(\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}=-2,634825932\)
a)Xét hai tam giác AEC và AED có
\(EC = ED\)
\(\widehat {CEA} = \widehat {DEA}\)
AE chung
\( \Rightarrow \Delta AEC{\rm{ = }}\Delta AED\)(c.g.c)
b)
Do \(\Delta AEC{\rm{ = }}\Delta AED\) nên \(\widehat {CAE} = \widehat {DAE}\) ( 2 góc tương ứng) và AC=AD ( 2 cạnh tương ứng).
Xét \(\Delta ABC\) và \(\Delta ABD\) có:
AB chung
\(\widehat {CAE} = \widehat {DAE}\)
AC=AD
\( \Rightarrow \Delta ABC = \Delta ABD\)(c.g.c)
a)
n = 20 tức n chẵn.
Khi n chẵn: \(A=-4.\dfrac{n}{2}=-4.\dfrac{20}{2}=-40\)
b)
Khi n chẵn:
\(A=-4.\dfrac{n}{2}=-2n\)
Khi n lẽ:
\(A=1+\dfrac{4\left(n-1\right)}{2}=1+2\left(n-1\right)=1+2n-2=2n-1\)
a) Số hạng thứ 20 (n=20) là
\(\left(20-1\right).4=76\)
\(A=1-5+9-13+17-21+...+76\)
\(A=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(A=\left(-4\right).38=-152\)
b) Số hạng thứ n là:
\(\left(n-1\right).4\)
\(\)\(A=1-5+9-13+17-21+...+\left(n-1\right).4\)
\(A=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\) ((n-1).2 số -4)
\(A=\left(-4\right).\left(n-1\right).2=-8\left(n-1\right)\)
\(P=...\)
\(=\frac{1}{30}\left(\frac{30}{2.32}+\frac{30}{3.33}+...+\frac{30}{1973.2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}\right)-\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2003}\right)\right]\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
\(Q=...\)
\(=\frac{1}{1972}\left(\frac{1972}{2.1974}+\frac{1972}{3.1975}+...+\frac{1}{31.2003}\right)\)
\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)
\(=\frac{1}{1972}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
a, A = \(\dfrac{12x-2}{4x+1}\)
2\(x\) - 4 = 0 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 = 2
Giá trị của A tại 2\(x\) - 4 = 0 là giá trị của A tại \(x\) = 2
A = \(\dfrac{12\times2-2}{4\times2+1}\) = \(\dfrac{22}{9}\)
b, A = 1 \(\Leftrightarrow\) \(\dfrac{12x-2}{4x+1}\) = 1
12\(x\) - 2 = 4\(x\) + 1
12\(x\) - 4\(x\) = 1 + 2
8\(x\) = 3
\(x\) = \(\dfrac{3}{8}\)
c, A \(\in\) Z ⇔ 12\(x\) - 2 ⋮ 4\(x\) + 1
12\(x\) + 3 - 5 ⋮ 4\(x\) + 1
3.(4\(x\) + 1) - 5 ⋮ 4\(x\) + 1
5 ⋮ 4\(x\) + 1
Ư(5) ={-5; -1; 1; 5}
Lập bảng ta có:
\(4x+1\) | -5 | -1 | 1 | 5 |
\(x\) | -3/2 | -1/2 | 0 | 1 |
Vậy \(x\) \(\in\) {0; 1}