K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
9 tháng 4 2019

+ \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\cdot\frac{2}{n\left(n+1\right)\left(n+2\right)}\) \(=\frac{1}{2}\cdot\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

Do đó : \(E=30\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\right)\)

\(E=30\cdot\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(E=15\cdot\left(\frac{1}{2}-\frac{1}{9900}\right)=15\cdot\frac{4949}{9900}=\frac{4949}{660}\)

7 tháng 6 2020

\(D=\frac{30}{1.2.30}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)

\(=15.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=15.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=15.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=15.\frac{8249}{9900}=\frac{8249}{660}\)

7 tháng 6 2020

\(D=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)

\(=15\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=15\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=15\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=15.\frac{4949}{9900}=\frac{4949}{660}\)

Vậy \(D=\frac{4949}{660}\).

18 tháng 2 2016

2A=2(1/1.2.3+1/2.3.4+...+1/98.99.100)

2A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-...+1/98.99-1/99.100

2A=1/1.2-1/99.100

2A=4949/9900

A=4949/9900:2

A=4949/19800

                                         Vậy A=4949/198000

9 tháng 3 2021

Lưu Trường An làm đúng rồi

1 tháng 3 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{98.99.100}=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{k}=\frac{1}{2}\Rightarrow k=2\)

28 tháng 2 2017

k=2

19 tháng 5 2016

Giải:

Ta có nhận xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{3-1}{1.2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{4-2}{2.3.4}=\frac{2}{2.3.4}\)

=>\(\frac{1}{1.2.3}=\frac{1}{3}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)

\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)

Do đó M=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}-\frac{1}{11.12}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)=\frac{1}{2}-\frac{1}{11.12}\)

=\(\frac{1}{2}.\frac{65}{132}=\frac{65}{124}\)

Vậy M=65/124

19 tháng 5 2016

M=\(\frac{65}{124}\)

13 tháng 10 2016

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{99.100}=\frac{49}{99.100}\Rightarrow A=\frac{49}{2.99.100}\)