Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T/c:A=1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6+...+1/97*98*99+1/98*99*100
2A=2/1*2*3+2/2*3*4+2/3*4*5+2/4*5*6+...+2/97*98*99+1/98*99*100
2A=(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+.....+(1/97*98-1/98*99)+(1/98*99-1/99*100)
2A=1/2+1/99*100
A=tự tính nha
Đặt S = 1/1.2.3 - 1/2.3.4 - 1/3.4.5 - ...- 1/97.98.99
S x 2 = 2/1.2.3 - 2/2.3.4 - 2/3.4.5 - ...- 2/97.98.99
= (1/1.2 -1/2.3) - (1/2.3 - 1/3.4 ) - (1/3.4 - 1/4.5) - ...- (1/97.98 - 1/98.99)
= 1/1.2 - 1/2.3 - 1/2.3 + 1/3.4 - 1/3.4 + 1/4.5 - ....- 1/97.98 + 1/98.99
= 1/2 -1/3 + 1/98.99
= 1618/9072 => S = 1618/9072 : 2 = 809/9072
=1+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{2}\) -\(\frac{1}{3}\) -\(\frac{1}{4}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{100}\)-\(\frac{1}{101}\)
=1+\(\frac{1}{101}\)
=\(\frac{102}{101}\)
1/1.2.3 = 1/2 .[1/1.2 - 1 / 2.3]
1/2.3.4 = 1/2[ 1/2- 1/3 ]
...................
1/99.100.101 = 1/2[ 1/99. 100 - 1/100.101]
=> A= 1/2 [ 1/1.2- 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/ 4.5 +.........+ 1/99 .100 - 1/100. 101]
A = 1/2 . [1/1.2 -1/100 .101]
A= 1/2 . 5049 /10100 = 5049 / 20200.
Mình nghĩ là vậy đó.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)\)
\(=\frac{1}{2}.\frac{370}{741}\)
\(=\frac{1}{2}.\frac{370}{741}\)
\(=\frac{185}{741}\)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2A=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)
\(A=\frac{185}{741}\)
Chúc bn hc tốt <3
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..+\frac{1}{99.100.101}\)
A = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)
A = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{101}{99.100.101}-\frac{99}{99.100.101}\right)\)
A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
A = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100.101}\right)\)
A = \(\frac{1}{2}.\frac{5049}{10100}\)
A = \(\frac{5049}{20200}\)
Đặt B, ta có:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
Thấy:
\(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0\)
\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)