Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{15}+\dfrac{4}{15}-\dfrac{4}{17}}\) \(=\dfrac{1.\left(50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}\right)}{2.\left(50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\)
\(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}\cdot\dfrac{858585}{313131}\cdot\left(-1\dfrac{14}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{85}{31}\cdot\dfrac{-31}{17}\)
\(=\dfrac{-5}{4}\)
bài1
a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\)
=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\)
=\(\dfrac{1}{12}+\dfrac{9}{12}\)
=\(\dfrac{10}{12}=\dfrac{5}{6}\)
bài 1
b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\)
= \(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\)
= \(-\dfrac{6}{5}+\dfrac{3}{10}\)
=\(-\dfrac{12}{10}+\dfrac{3}{10}\)
=\(-\dfrac{9}{10}\)
a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}\)
\(=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
b) \(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(20.5\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{12}.\left(2^{18}+2^8\right)}{2^{12}.\left(1+2^{10}\right)}=\frac{2^{18}+2^8}{1+2^{10}}=256\)
a) \(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}\)
\(=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)
\(=\dfrac{12}{12}+\dfrac{-13}{13}\)
\(=1-1\)
\(=0\)
b) \(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}\)
\(=\dfrac{100^4}{100^5}\)
\(=\dfrac{1}{100}\)
Bai 1: tính nhanh A) -5/9 + 3/5 - 3/9 + -2/5 B) -5/13 + (3/5 + 3/1 - 4/10) C) 5/17 - 9/15 - 2/-17 + -2/15 D) (1/9 - 9/17) + 3/6 - ( 12/17 - 1/2) + -1/9 Bài 5: tính tổng A) 1/3 + -1/4 + 1/5 + 1/-6 + -1/-7 + 1/6 + -1/5 + 1/4 + 1/3 B) 1/12 +1/2.3+1/3.4+..+1/99100 Giúp mình nhé nhanh
c: Ta có: \(-\dfrac{5}{13}-\left(\dfrac{3}{5}+\dfrac{3}{13}-\dfrac{4}{10}\right)\)
\(=\dfrac{-5}{13}-\dfrac{3}{5}-\dfrac{3}{13}+\dfrac{2}{5}\)
\(=\dfrac{-8}{13}-\dfrac{1}{5}\)
\(=\dfrac{-53}{65}\)
d: Ta có: \(\left(\dfrac{1}{9}-\dfrac{9}{17}\right)+\dfrac{3}{6}-\left(\dfrac{12}{17}-\dfrac{1}{2}\right)+\dfrac{5}{9}\)
\(=\dfrac{1}{9}-\dfrac{9}{17}+\dfrac{1}{2}-\dfrac{12}{17}+\dfrac{1}{2}+\dfrac{5}{9}\)
\(=\dfrac{2}{3}+1-\dfrac{21}{17}\)
\(=\dfrac{22}{51}\)
\(E=\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{7}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(E=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right).\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\left(-\dfrac{41}{21}\right)}\)
\(E=\dfrac{\dfrac{25}{108}.\dfrac{5751}{25}+\dfrac{187}{4}}{-\dfrac{100}{41}}\)
\(E=\dfrac{\dfrac{213}{4}+\dfrac{187}{4}}{-\dfrac{100}{41}}\)
\(E=\dfrac{100}{-\dfrac{100}{41}}\)
\(E=-41\)
câu trên bạn kiểm tra lại.
\(A=\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\) (sửa 502+507 thành 503.507)
\(\Rightarrow A=10\left(\dfrac{1}{7.12}+\dfrac{1}{12.17}+\dfrac{1}{17.22}+...+\dfrac{1}{502.507}\right)\)
\(\Rightarrow A=10.\dfrac{1}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+...+\dfrac{1}{502}-\dfrac{1}{507}\right)\)
\(\Rightarrow A=2.\left(\dfrac{1}{7}-\dfrac{1}{507}\right)=2.\left(\dfrac{500}{3549}\right)=\dfrac{1000}{3549}\)
\(B=\dfrac{4}{8.13}+\dfrac{4}{13.18}+\dfrac{4}{18.23}+...+\dfrac{4}{253.258}\)
\(\Rightarrow B=4\left(\dfrac{1}{8.13}+\dfrac{1}{13.18}+\dfrac{1}{18.23}+...+\dfrac{1}{253.258}\right)\)
\(\Rightarrow B=4.\dfrac{1}{5}\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\)
\(\Rightarrow B=\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{258}\right)=\dfrac{4}{5}\left(\dfrac{129}{1032}-\dfrac{8}{1032}\right)=\dfrac{4}{5}.\dfrac{121}{1032}=\dfrac{121}{1290}\)