Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}\cdot\dfrac{858585}{313131}\cdot\left(-1\dfrac{14}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{85}{31}\cdot\dfrac{-31}{17}\)
\(=\dfrac{-5}{4}\)
\(A=\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\) (sửa 502+507 thành 503.507)
\(\Rightarrow A=10\left(\dfrac{1}{7.12}+\dfrac{1}{12.17}+\dfrac{1}{17.22}+...+\dfrac{1}{502.507}\right)\)
\(\Rightarrow A=10.\dfrac{1}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+...+\dfrac{1}{502}-\dfrac{1}{507}\right)\)
\(\Rightarrow A=2.\left(\dfrac{1}{7}-\dfrac{1}{507}\right)=2.\left(\dfrac{500}{3549}\right)=\dfrac{1000}{3549}\)
\(B=\dfrac{4}{8.13}+\dfrac{4}{13.18}+\dfrac{4}{18.23}+...+\dfrac{4}{253.258}\)
\(\Rightarrow B=4\left(\dfrac{1}{8.13}+\dfrac{1}{13.18}+\dfrac{1}{18.23}+...+\dfrac{1}{253.258}\right)\)
\(\Rightarrow B=4.\dfrac{1}{5}\left(\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}+...+\dfrac{1}{253}-\dfrac{1}{258}\right)\)
\(\Rightarrow B=\dfrac{4}{5}\left(\dfrac{1}{8}-\dfrac{1}{258}\right)=\dfrac{4}{5}\left(\dfrac{129}{1032}-\dfrac{8}{1032}\right)=\dfrac{4}{5}.\dfrac{121}{1032}=\dfrac{121}{1290}\)
\(a,=\dfrac{5}{7}-\dfrac{33}{8}=-\dfrac{191}{56}\\ b,=\left(\dfrac{12}{17}+\dfrac{5}{17}\right)+\left(\dfrac{19}{7}+\dfrac{3}{7}\right)=1+3=4\\ c,=\left(0,125\cdot8\right)^{12}-\left(\dfrac{45}{15}\right)^3=1-3^3=-26\\ d,=\left(-\dfrac{1}{3}\right)\left(5\dfrac{2}{7}-2\dfrac{2}{7}\right)=-\dfrac{1}{3}\cdot3=-1\\ e,=\dfrac{3^4\cdot3^6}{3^9}=3\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`-9/34*17/4`
`=`\(\dfrac{-9}{17\cdot2}\cdot\dfrac{17}{4}\)
`=`\(-\dfrac{9}{2}\cdot\dfrac{1}{4}\)
`=`\(-\dfrac{9}{8}\)
`b)`
\(\dfrac{17}{15}\div\dfrac{4}{3}\)
`=`\(\dfrac{17}{15}\cdot\dfrac{3}{4}\)
`=`\(\dfrac{17}{3\cdot5}\cdot\dfrac{3}{4}\)
`=`\(\dfrac{17}{5}\cdot\dfrac{1}{4}\)
`=`\(\dfrac{17}{20}\)
`c)`
\(4\dfrac{1}{5}\div\left(-2\dfrac{4}{5}\right)\)
`=`\(4\dfrac{1}{5}\cdot\left(-\dfrac{5}{14}\right)\)
`=`\(\dfrac{21}{5}\cdot\left(-\dfrac{5}{14}\right)\)
`=`\(-\dfrac{21}{14}=-\dfrac{3}{2}\)
a) \(\dfrac{-9}{34}\cdot\dfrac{17}{4}\)
\(=\dfrac{-9\cdot17}{34\cdot4}\)
\(=-\dfrac{153}{136}\)
\(=\dfrac{9}{8}\)
b) \(\dfrac{17}{15}:\dfrac{4}{3}\)
\(=\dfrac{17}{15}\cdot\dfrac{3}{4}\)
\(=\dfrac{17\cdot3}{15\cdot4}\)
\(=\dfrac{51}{60}=\dfrac{17}{20}\)
c) \(4\dfrac{1}{5}:\left(-2\dfrac{4}{5}\right)\)
\(=\dfrac{21}{5}:-\dfrac{14}{5}\)
\(=\dfrac{21}{5}\cdot-\dfrac{5}{14}\)
\(=\dfrac{21\cdot-5}{5\cdot14}\)
\(=-\dfrac{105}{70}=\dfrac{3}{2}\)
\(a,=\dfrac{9}{12}-\dfrac{7}{12}-\dfrac{8}{12}=-\dfrac{1}{2}\\ b,=\dfrac{95}{6}+\dfrac{17}{18}-\dfrac{5}{12}=\dfrac{589}{36}\)
a. = 1/20 + 5 - 1/2
= 101/20 - 1/2
= 91/20
b. = ( 6/15 - 3/5) - ( 7/8 + 2/16) + 3
= -1/5 - 1 + 3
= 9/5
c. = 15/7 . ( 3/5 - 8/5)
= 15/7 . ( -1)
= - 15/7
e. = -14/9 - 3/9
= -17/9
f. = 19/21 . ( 15/17 + 2/17) + 13/21
= 19/21 . 1 + 13/21
= 32/21
g. = 43/12 : 2 + 5/24
= 43/24 + 5/24
= 2
Câu 1:
\(=\dfrac{15}{34}+\dfrac{19}{34}-1-\dfrac{15}{17}+\dfrac{1}{3}+\dfrac{3}{5}\)
\(=-\dfrac{15}{17}+\dfrac{14}{15}=\dfrac{13}{255}\)
Câu 2:
\(=\dfrac{5^4\cdot5^4\cdot2^8}{4^4\cdot6^4\cdot3^2\cdot5}=\dfrac{5^7}{6^4\cdot3^2}\)
\(1,\)
\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)
\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{125}\)
\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)
\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)
\(=-15.\left(2-\dfrac{1}{21}\right)\)
\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)
\(2,\)
\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)
\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)
\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)
\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)
\(\Leftrightarrow x=\dfrac{5}{12}\)
Vậy \(x=\dfrac{5}{12}\)
\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)
\(c,7^{x+2}+2.7^{x-1}=345\)
\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)
\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)
\(\Leftrightarrow7^{x-1}.345=345\)
\(\Leftrightarrow7^{x-1}=345:345=1\)
\(\Leftrightarrow x-1=0\)
\(x=0+1=1\)
Vậy \(x=1\)
\(\dfrac{50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{15}+\dfrac{4}{15}-\dfrac{4}{17}}\) \(=\dfrac{1.\left(50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}\right)}{2.\left(50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\)