Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2xy-y+4x=14
y(2x+1)+4x+2=16
y(2x+1)+2(2x+1)=16
(y+2)(2x+1)=16=1.16=16.1=2.8=8.2=4.4
Đến đây bạn tự lập bảng, còn lại dễ mà:))
2xy + 4x - y = 6
2x(y + 2) - (y + 2) = 4
(2x - 1)(y + 2) =4
vì x;y thuộc Z nên xét bảng:
2x - 1 | 1 | 2 | 4 | -1 | -2 | -4 |
y + 2 | 4 | 2 | 1 | -4 | -2 | -1 |
x | 1 | loại | loại | 0 | loại | loại |
y | 2 | -6 |
Vậy nếu x = 1 thì y = 2
hoặc nếu x = 0 thì y = -6
ta có 2xy + 4x - y = 6
=> 2x ( y + 2 ) - y = 6
=> 2x ( y + 2 ) - y - 2 = -2
=> 2x ( y + 2 ) - ( y + 2 ) = -2
=> (y+2) ( 2x-1) = -2
=> y + 2 và 2x - 1 thuộc ước của 12
đến đây bn tự làm nhé
2xy - 4x + y = 10
=> 2xy - 4x + y = 10
=> 2x(y - 2) + y - 2 = 10 - 2
=> (2x + 1)(y - 2) = 8
Với \(x;y\inℤ\Rightarrow\hept{\begin{cases}2x+1\inℤ\\y-4\inℤ\end{cases}}\)khi đó 8 = 2.4 = (-4).(-2) = 1.8 = (-1).(-8)
Lập bảng xét các trường hợp :
2x + 1 | 1 | 8 | -1 | -8 | 2 | 4 | -2 | -4 |
y - 2 | 8 | 1 | -8 | -1 | 4 | 2 | -4 | -2 |
x | 0 | 3,5 | -1 | -4,5 | 0,5 | 1,5 | -1,5 | -2,5 |
y | 10 | 3 | -6 | 1 | 6 | 4 | -2 | 0 |
Vậy các cặp (x ; y) thỏa mãn là : (0 ; 10) ; (-1;-6)
\(2xy-4x+y=10\) \(\Leftrightarrow2x\left(y-2\right)+y-2=10-2\)
\(\Leftrightarrow\left(2x+1\right)\left(y-2\right)=8\)
Vì \(2x+1\)là số lẻ \(\Rightarrow2x+1\)thuộc ước lẻ của 8
Lập bảng giá trị ta có:
\(2x+1\) | \(-1\) | \(1\) |
\(x\) | \(-1\) | \(0\) |
\(y-2\) | \(-8\) | \(8\) |
\(y\) | \(-6\) | \(10\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(-1;-6\right)\), \(\left(0;10\right)\)
Bài 1:
\(-5.\left(2-x\right)+4.\left(x-3\right)=10x-15\)
\(-10+5x+4x-12=10x-15\)
\(\left(5x+4x\right)+\left(-10-12\right)+15=10x\)
\(9x+\left(-7\right)=10x\)
\(-7=10x-9x\)
\(x=-7\)
2xy + 3y - 4x = 11
=> 2x(y - 2) + 3y - 6 = 11 - 6
=> 2x(y-2) + 3(y - 2) = 5
=> (2x + 3)(y - 2) = 5
xét bảng là ra
4n - 5 chia hết cho 3n - 1
=> 3(4n - 5) chia hết cho 3n - 1
=> 12n - 15 chia hết cho 3n - 1
=> 12n - 4 - 11 chia hết cho 3n - 1
=> 4(3n - 1) - 11 chia hết cho 3n - 1
=> 11 chia hết cho 3n - 1
=> ...
\(2xy+y-14=4x\)
\(4x-2xy-y+14=0\)
\(\left(4x-2xy\right)-y=-14\)
\(2x\left(2-y\right)+2-y=-14+2\)
\(2x\left(2-y\right)+\left(2-y\right)=-12\)
\(\left(2-y\right)\left(2x+1\right)=-12\)
Mà \(x,y\in Z\)
\(2x+1\) là số nguyên lẻ
\(\Rightarrow2x+1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow2x\in\left\{-4;-2;0;2\right\}\)
\(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)
*) \(x=-2\)
\(\Rightarrow\left(2-y\right)\left[2.\left(-2\right)+1\right]=-12\)
\(\Rightarrow\left(2-y\right).\left(-3\right)=-12\)
\(\Rightarrow2-y=4\)
\(\Rightarrow y=-2\)
\(\Rightarrow\left(x;y\right)=\left(-2;-2\right)\)
*) \(x=-1\)
\(\Rightarrow\left(2-y\right)\left[2.\left(-1\right)+1\right]=-12\)
\(\Rightarrow\left(2-y\right).\left(-1\right)=-12\)
\(\Rightarrow2-y=12\)
\(\Rightarrow y=-10\)
\(\Rightarrow\left(x;y\right)=\left(-1;-10\right)\)
*) \(x=1\)
\(\Rightarrow\left(2-y\right)\left(2.1+1\right)=-12\)
\(\Rightarrow\left(2-y\right).3=-12\)
\(\Rightarrow2-y=-4\)
\(\Rightarrow y=6\)
\(\Rightarrow\left(x;y\right)=\left(1;6\right)\)
*) \(x=0\)
\(\Rightarrow\left(2-y\right)\left(2.0+1\right)=-12\)
\(\Rightarrow\left(2-y\right).1=-12\)
\(\Rightarrow2-y=-12\)
\(\Rightarrow y=14\)
\(\Rightarrow\left(x;y\right)=\left(0;14\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(-2;-2\right);\left(-1;-10\right);\left(-2;-2\right);\left(0;14\right)\right\}\)
Olm chào em, đây là dạng toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em giải dạng này như sau:
Giải:
2\(xy\) + y - 14 = 4\(x\)
(2\(xy\) + y) - 14 = 4\(x\)
y(2\(x\) + 1) = 4\(x\) + 14
y = (4\(x\) + 14) : (2\(x\) + 1)
y \(\in\) Z ⇔ (4\(x\) + 14) ⋮ (2\(x\) + 1)
⇒ (4\(x\) + 2 + 12) ⋮ (2\(x\) + 1)
⇒ [2.(2\(x\) + 1) + 12] ⋮ (2\(x\) + 1)
⇒ 12 ⋮ (2\(x\) + 1)
2\(x\) + 1 \(\in\) Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
Theo bảng trên ta có: (\(x\); y) = (-2; -2); (-1; -10); (0; 14); (1; 6)
Kết luận: Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-2; -2); (-1; -10); (0; 14); (1; 6)