K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

b) 

Vì \(\left(3x-1\right)^{2018}\ge0\forall x\)

   \(\left(y+\frac{3}{5}\right)^{2020}\ge0\forall y\) 

\(\Rightarrow\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\forall x;y\) 

Để thỏa mãn đ/b => \(\left(3x-1\right)^{2018}=0\Leftrightarrow x=\frac{1}{3}\) và   \(\left(y+\frac{3}{5}\right)^{2020}=0\Leftrightarrow y=\frac{-3}{5}\) 

Vậy....

21 tháng 7 2019

a)Ta có : \(3x-y+xy=8=>3\left(x-1\right)+y\left(x-1\right)=5=>\left(3+y\right)\left(x-1\right)=5\)

Đến đây lập bảng là ra .

b)Ta có : \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)

Lại có : \(\left(3x-1\right)^{2018}\ge0;\left(y+\frac{3}{5}\right)^{2020}\ge0=>\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\)

\(=>\hept{\begin{cases}3x-1=0\\y+\frac{3}{5}=0\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{3}{5}\end{cases}}\)

1 tháng 11 2020

\(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)

Ta có : \(\hept{\begin{cases}\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\\\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!

10 tháng 4 2020

Tí ăn xong giải tiếp

10 tháng 4 2020

Câu 3a này cái cuối là 1/2018.2020 mới đúng chứ