K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

1 tháng 12 2019

Đặt \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}=k\)=> \(\hept{\begin{cases}x=2012k\\y=2013k\\z=2014k\end{cases}}\)

khi đó, ta có: (x - z)3 =  (2012k - 2014k)3 = (-2k)3 = -8k3

 8(x - y)2(y - z) = 8(2012k - 2013k)2(2013 - 2014k) = 8(-k)2.(-k) = -8k3

=> (x - z)3 = 8(x - y)2(y - z)

4 tháng 1 2018

xin loi , may tinh minh hong unikey

Dat \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}=k\)

Suy ra \(x=2017k;y=2018k;z=2019k\)

Khi đó 4.(x-y).(y-z) = \(4.\left(2017k-2018k\right).\left(2018k-2019k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

\(\left(z-x\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Nen \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)

21 tháng 1 2016

bài lớp 10 bất đẳng thức mấy chú k hiểu là đúng r -______-''

21 tháng 1 2016

hc o nha cho đó mk dg hc chi vaxma tốc độ

23 tháng 12 2015

\(\frac{x}{2014}=\frac{y}{2015}=\frac{z}{2016}=\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Leftrightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)

\(\Leftrightarrow\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left[2\left(x-y\right)\right]^2.\left[2\left(y-z\right)\right]=8\left(x-y\right)^2\left(y-z\right)\)

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!

1 tháng 4 2018

=> x-y /35 = y-z/15 = z-x /21

Theo tính chất dãy tỉ số bằng nhau ta có:

x-y /35 = y-z/15 = z-x /21 = x-y + y-z + z-x / 35+15+21 = 0

=>x-y =0

   y-z =0

   z-x =0

=>x=y=z

 thay vào đẳng thức cầm c/m ta có 2 vế đều = 0 vì y-x=0 và z-y=0 (do x=y=z)