K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Đề bài sai nha:\(x^{2019}\times y^{2018}\)Ko phải chia đâu

25 tháng 12 2018

\(\hept{\begin{cases}\left(x+1\right)^{2018}\ge0\\\left|y-1\right|\ge0\end{cases}}\Rightarrow\left(x+1\right)^{2018}+\left|y-1\right|\ge0\)

dấu = xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^{2018}=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

\(P=x^{2019}.y^{2018}=\left(-1\right)^{2019}.1^{2018}=-1.1=-1\)

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!

4 tháng 4 2020

\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)

            \(|y-2020|\ge0với\forall y\)

\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)

\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)

\(\Rightarrow M=x+y=-2019+2020=1\)

19 tháng 12 2019

B1:

\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)

+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)

+Dấu "=" xảy ra khi

\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)

\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)

+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)