K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1

đk đã cho \(\Leftrightarrow\)\(8\left(x-2022\right)^2+y^2=25\)       (1)

Vì \(\left(x-2022\right)^2\ge0;y^2\ge0\) nên (1) suy ra:

\(8\left(x-2022\right)^2\le25\)

\(\Leftrightarrow\left(x-2022\right)^2\le\dfrac{25}{8}\)

Do \(x\inℤ\) nên suy ra \(\left(x-2022\right)^2\le3\)

\(\Rightarrow x-2022\in\left\{0;\pm1;\pm2;\pm3\right\}\)

\(\Rightarrow x\in\left\{2022;2023;2021;2024;2020;2025;2019\right\}\)

Nếu \(x=2022\Rightarrow y=\pm5\)

Nếu \(x\in\left\{2021;2023\right\}\) thì \(y^2=17\), vô lý.

Nếu \(\left|x-2022\right|\ge2\) thì \(8\left(x-2022\right)^2\ge32\) \(\Leftrightarrow25-y^2\ge32\) \(\Leftrightarrow y^2\le-7\), vô lý.

 Vậy có các cặp số (x; y) sau thỏa mãn:

 \(\left(2022;5\right),\left(2022;-5\right)\)

7 tháng 1

Do (x - 2022)² ≥ 0 với mọi x R

8(x - 2022)² ≥ 0 với mọi x R

25 - y² ≥ 0

y² ≤ 25

⇒ y ∈ {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}

Do x, y ∈ Z nên (25 - y²) ⋮ 8

⇒ y ∈ {-5; -3; -1; 1; 3; 5}

⇒ (25 - y²) : 8 ∈ {0; 2; 3}

⇒ (x - 2022)² ∈ {0; 2; 3}

⇒ x - 2022 = 0

⇒ x = 2022

Vậy ta tìm được 2 cặp giá trị (x; y) thỏa mãn:

(2022; -5); (2022; 5)

14 tháng 1 2018

Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 

12 tháng 3 2017

Ta co : 8(x-2014)2 = 25-y2

=> 8(x-2014)2 + y2 = 25 (*)

Voi moi \(y\in N\) ta co y2 \(\ge0\)

\(\Rightarrow8\left(x-2014\right)^2\le25\)

\(\Rightarrow\left(x-2014\right)^2\le\dfrac{25}{3}\)

Vi x\(\in N\)

\(\Rightarrow\left(x-2014\right)^2=0hoac\left(x-2014\right)^2=1\)

Neu\(\left(x-2014\right)^2=1\) thay vao(*) ta duoc;

8 . 1+ y2 =25

\(\Rightarrow25-8=y^2\)

17 = y2 (loai) (vi y \(\in N\))

Neu \(\left(x-2014\right)^2=0\) thay vao (*) ta duoc:

8 . 0 + y2 = 25

=> y2 = 25

=> y = 5 (vi y\(\in N\))

Khi do \(\left(x-2014\right)^2=0\)

=> x- 2014 = 0 => x = 2014

Vay x = 2014, y = 5

29 tháng 9 2016

-1,5625 và 1,5625

22 tháng 12 2018

Tìm các số tự nhiên x y biết

25-y^2=8(x-2016)^2

Bài làm 

Dêz thấy rằng 25-y^2 chia hết cho 8

=> y E {1;3;5}

+) y=1=> (x-2016)^2=3

3 không là số chính phương

+) y=3

+)y=5

14 tháng 5 2018

Sửa đề tí nha: \(8\left(2009-x\right)^2=25-y^2\)

Đặt \(t=x-2009\left(ĐK:t\in Z\right)\)

\(\Rightarrow8t^2=25-y^2\Rightarrow y^2\le25\)

Xét trường hợp 1: \(y^2=0\Rightarrow t^2=\frac{25}{8}\)( loại )

Xét trường hợp 2: \(y^2=4\Rightarrow t^2=\frac{21}{8}\)( loại )

Xét trường hợp 3: \(y^2=9\Rightarrow t^2=2\)( loại )

Xét trường hợp 4: \(y^2=16\Rightarrow t^2=\frac{9}{8}\)( loại )

Xét trường hợp 5: \(y^2=25\Rightarrow t^2=0\)( nhận ) \(\Rightarrow y=5;-5;x=2009\)

Vậy phương trình có nghiệm nguyên là ( 2009 , -5 ) ; ( 2009 , 5 ) 

14 tháng 5 2018

giup minh di

27 tháng 2 2016

Vậy x(x + y + z) + y(x + y+ z) + z(x + y + z) = 2 + 25 - 2 = 25

(x + y + z)(x + y + z) = 25

(x + y  + z) = 52 = (-5) 2

Bạn tự liệt kê x;y;z ra nha!

27 tháng 2 2016

Ta có : x (x + y + z) = 2      (1)

             y (x + y + z) = 25    (2)

             z (x + y + z) = -2      (3)

=> x (x + y + z) + y (x + y + z) + z (x + y + z) = 2 + 25 + (-2)

=> (x + y + z) (x + y + z) = 25

=> (x + y + z)2 = 52  = (-5)2

* Nếu (x + y + z)2 = 52 => x + y + z = 5       (4)

Từ (1) và (4) => x . 5 = 2 => x = 2/5 (thỏa mãn x > 0)

Từ (2) và (4) => y . 5 = 25 => y = 5

Từ (30 và (4) => z . 5 = -2 => z = -2/5

* Nếu (x + y + z)2 = (-5)2 => x + y + z = -5     (5)

Từ (1) và (5) => x . (-5) = 2 => x = -2/5 (ko thỏa mãn x > 0)

Vậy x = 2/5 ; y = 5 ; z = -2/5 thì thỏa mãn đề bài