K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1

đk đã cho \(\Leftrightarrow\)\(8\left(x-2022\right)^2+y^2=25\)       (1)

Vì \(\left(x-2022\right)^2\ge0;y^2\ge0\) nên (1) suy ra:

\(8\left(x-2022\right)^2\le25\)

\(\Leftrightarrow\left(x-2022\right)^2\le\dfrac{25}{8}\)

Do \(x\inℤ\) nên suy ra \(\left(x-2022\right)^2\le3\)

\(\Rightarrow x-2022\in\left\{0;\pm1;\pm2;\pm3\right\}\)

\(\Rightarrow x\in\left\{2022;2023;2021;2024;2020;2025;2019\right\}\)

Nếu \(x=2022\Rightarrow y=\pm5\)

Nếu \(x\in\left\{2021;2023\right\}\) thì \(y^2=17\), vô lý.

Nếu \(\left|x-2022\right|\ge2\) thì \(8\left(x-2022\right)^2\ge32\) \(\Leftrightarrow25-y^2\ge32\) \(\Leftrightarrow y^2\le-7\), vô lý.

 Vậy có các cặp số (x; y) sau thỏa mãn:

 \(\left(2022;5\right),\left(2022;-5\right)\)

7 tháng 1

Do (x - 2022)² ≥ 0 với mọi x R

8(x - 2022)² ≥ 0 với mọi x R

25 - y² ≥ 0

y² ≤ 25

⇒ y ∈ {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}

Do x, y ∈ Z nên (25 - y²) ⋮ 8

⇒ y ∈ {-5; -3; -1; 1; 3; 5}

⇒ (25 - y²) : 8 ∈ {0; 2; 3}

⇒ (x - 2022)² ∈ {0; 2; 3}

⇒ x - 2022 = 0

⇒ x = 2022

Vậy ta tìm được 2 cặp giá trị (x; y) thỏa mãn:

(2022; -5); (2022; 5)

5 tháng 4 2023

Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.

Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.

                             25 - y2 = 8( \(x\) - 2015)2

                             ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\)  (1) 

   Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y≤ 25 ∀ y 

                         ⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)

                        ⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)

 Kết hợp (1) và (2) ta có:  0  ≤  (\(x-2015\))2 ≤ 3,125 

vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z 

                ⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}       

                th1:(\(x-2015\)  )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5

     th2:(\(x-2015\))= 1⇒ 25 - y2 = 8  ⇒ y2 = 25 - 8  ⇒ y = +- \(\sqrt{17}\) ( loại)

          th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)

          th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)

Vậy (\(x,y\)) = ( 2015; -5);  ( 2015; 5) là giá trị thỏa mãn đề bài

          

          

 

                        

                    

         

 

4 tháng 4 2022

vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)

mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)

=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)

16 tháng 11 2016

sua lai bai cua minh

Neu \(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)

Vay \(25=8\left(x-2017\right)^2+y^2\\ =>25=8+y^2\\ =>y^2=17\left(loai\right)\)(do x;y \(\in N\))

Vay \(x=2017;y=5\)

16 tháng 11 2016

Ta co

\(25-y^2=8\left(x-2017\right)^2\\ =>25=8\left(x-2017\right)^2+y^2\)

Do

\(8\left(x-2017\right)^2\le25\\ =>\left(x-2017\right)^2\le\frac{25}{8}\)

\(=>\left(x-2017\right)^2\in\left\{0;1\right\}\)

Neu

\(\left(x-2017\right)^2=0\\ x-2017=0\\ x=2017\)

Vay:

\(25=8\left(x-2017\right)^2+y^2\\ =>25=y^2\\ =>y=5\)

Neu

\(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)

Vay:

\(25=8\left(x-2017\right)^2+y^2\\ =>25=1+y^2\\ =>y^2=24\)(loai do x;y \(\in N\))

Vay x=2017 ; y=5

19 tháng 4 2022

Ai lm giúp mik vs ạ❤

1 tháng 12 2023

phương trình bậc hai với hai biến x và y. Ta có thể giải nó bằng cách đặt (y = 5\cos{\theta}) (vì (|y| \leq 5)), từ đó suy ra (x = 2016 + \frac{5}{2}\tan{\theta}). Vì (x, y \in Z) nên (\tan{\theta}) phải là một số hữu tỉ. Ta có thể tìm các giá trị của (\theta) sao cho (\tan{\theta}) là một số hữu tỉ, từ đó suy ra các giá trị tương ứng của (x) và (y).

4 tháng 2 2021

\(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2022}+\left|x+y-z\right|=0\)

Ta có : \(\left(2x-1\right)^{2020}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2022}\ge0\forall x;\left|x+y-z\right|\ge0\forall x;y;z\)

Dấu bằng xảy ra <=> \(x=\frac{1}{2};y=\frac{2}{5};z=x+y=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)