K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 

5 tháng 4 2023

Cách nhanh nhất để giải bài này là dùng phương pháp chặn em nhé.

Phương pháp chặn là giới hạn các giá trị của biến kết hợp điều kiện đề bài để tìm biến. Em tham khảo cách này của cô xem.

                             25 - y2 = 8( \(x\) - 2015)2

                             ta có: ( \(x-2015\))2 ≥ 0 ∀ \(x\)  (1) 

   Mặt khác ta có: y2 ≥ 0 ∀ y ⇒ - y2 ≤ 0 ∀ y ⇒ 25 - y≤ 25 ∀ y 

                         ⇒ 25 - y2 = 8(\(x-2015\))2 ≤ 25 ∀ \(x,y\)

                        ⇒ (\(x-2015\))2 ≤ \(\dfrac{25}{8}\) = 3,125 ∀ \(x\) (2)

 Kết hợp (1) và (2) ta có:  0  ≤  (\(x-2015\))2 ≤ 3,125 

vì \(x\in\) Z nên ⇒ (\(x-2015\))2 \(\in\) Z 

                ⇒ (\(x-2015\))2 \(\in\) {0; 1; 2; 3}       

                th1:(\(x-2015\)  )2= 0 ⇒ \(x\) = 2015; ⇒ 25 - y2 = 0⇒ y = +-5

     th2:(\(x-2015\))= 1⇒ 25 - y2 = 8  ⇒ y2 = 25 - 8  ⇒ y = +- \(\sqrt{17}\) ( loại)

          th3: (\(x-2015\))2 = 2 ⇒ \(\left[{}\begin{matrix}x=\sqrt{2}+2015\left(ktm\right)\\x=-\sqrt{2}+2015\left(ktm\right)\end{matrix}\right.\)

          th4: (\(x-2015\))2 = 3 ⇒ \(\left[{}\begin{matrix}x=\sqrt{3}+2015\left(ktm\right)\\x=-\sqrt{3}+2015\left(ktm\right)\end{matrix}\right.\)

Vậy (\(x,y\)) = ( 2015; -5);  ( 2015; 5) là giá trị thỏa mãn đề bài

          

          

 

                        

                    

         

 

15 tháng 1 2017

2.(\(x^2+y^2\))=1978                                                                                                                                                                          \(\Leftrightarrow\left(x^2+y^2\right)=1978\div2\)                                                                                                                                                    \(\Leftrightarrow x^2+y^2=989\) (1)                                                                                                                                                    ta co \(x^2=989-y^2\rightarrow\) thay vào 1 ta đc ; \(989-y^2+y^2=989\)                                                                                                                                                  \(\Rightarrow989=989\) (luôn đúng với mọi x)                                                                                                                                    \(\rightarrow\) vô sô nghiêm                                                                                                                                                                                                                                                    

16 tháng 6 2016

=>2 x+2y =xy

=>xy -2x-2y=0

=>x(y-2)-2(y-2)=4

=>(x-2)(y-2)=4

x-2

14-1-42-2
y-241-4-12-2
x361-240
y632140

K NHA