Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2-(x+3) = 1+2+3+...+99
1+2+3+...+99 → có 99 số hạng
2-(x+3) = (1+99).99 : 2
2-(x+3) = 4950
x+3 = 2 + 4950
x+3 = 4952
x = 4952 - 3
x = 4949
b) (x+1)+(x+2)+...+(x+100) = 5750
→ có 100 cặp
(x+x+x+...+x) + ( 1+2+3+...+100 ) = 5750
=> 100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
0o0 Nguyễn Đoàn Tuyết Vy 0o0 bà kêu tui học tốt có nghĩa là học giốt đúng ko
=Xx10-(10+9+8+...+2+1) =20-15
=Xx10-(10+9+8+...+2+1) =5
Xx10-55 =5
Xx10=55+5
Xx10=60
X =60:10
X=6
(x-1) + (x-2)+(x-3)+ ....+(x-9)+(x-10) = -20-15
(x+x+x+...+x) - (1+2+3+4+...+9+10) = -35
=> 10x -55 = -35
=> 10x = -35 +55
=>> 10x = 20
=> x = 20 : 10
=> x = 2
\(1)\frac{1}{5}+\frac{2}{11}< \frac{x}{55}< \frac{2}{5}+\frac{1}{55}\)
\(\Rightarrow\frac{11}{55}+\frac{10}{55}< \frac{x}{55}< \frac{22}{55}+\frac{1}{55}\)
\(\Rightarrow\frac{21}{55}< \frac{x}{55}< \frac{23}{55}\)
\(\Rightarrow21< x< 23\)
\(\Rightarrow x=22\)
\(2)\frac{11}{3}+\frac{-19}{6}+\frac{-15}{2}\le x\le\frac{19}{12}+\frac{-5}{4}+\frac{-10}{3}\)
\(\Rightarrow\frac{22}{6}+\frac{-19}{6}+\frac{-45}{6}\le x\le\frac{19}{12}+\frac{-15}{12}+\frac{-40}{12}\)
\(\Rightarrow\frac{22+\left[-19\right]+\left[-45\right]}{6}\le x\le\frac{19+\left[-15\right]+\left[-40\right]}{12}\)
\(=\frac{-42}{6}\le x\le\frac{-36}{12}\)
\(\Rightarrow-7\le x\le-3\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ( 1 + 2 + 3 + 4 ) + ……+ ( 1 + 2 + 3 +…+ 99 ) = x
Ta thấy : số 1 xuất hiện trong 99 tổng , số 2 xuất hiện trong 98 lần , số 3 xuất hiện trong 97 tổng , ... , 99 xuất hiện trong 1 tổng
Nên tổng trên bằng ; 1 x 99 + 2 x 98 + 3 x 97 + ... + 97 x 3 + 98 x 2 + 99 x 1 = x
[( 1 x99 ) + ( 99 x1 )] + [( 2 x 98 ) + ( 98 x 2 ) ] + ... + [( 49 x 51 ) + ( 51 x 49 )] = x
( Tự làm tiếp )
a)(x2-4)(x2-10)<0
*)x2-4 >0 hoặc x2-10<0
x2>4 x2<10
4<x2<10 => 2<x<\(\sqrt{10}\)(TM)
*)x2-4 <0 hoặc x2-10>0
x2<4 x2>10
10<x2<4(KTM)
Vậy để (x2-4)(x2-10)<0 thì 2<x<\(\sqrt{10}\)
b)(x2-1)(x2-4)>0
*)x2-1 > 0 hoặc x2-4 >0
x2>1 hoặc x2>4
1<x2<4(TM)
*)cmtt
Vậy để (x2-1)(x2-4)>0 thì 1<x2<4
|x+1|+|x-4|=3x