K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Giải:

Ta có:

\(yz.zt=24.32\)

\(yt.z^2=24.32\)

\(48.z^2=24.32\)

\(\Rightarrow z^2=\dfrac{24.32}{48}=16\)

\(\Rightarrow z=4\)

Ta có:

\(yz=24\)

\(y.4=24\)

\(\Rightarrow y=6\)

Ta có:

\(xy=12\)

\(x.6=12\)

\(\Rightarrow x=2\)

Ta có:

\(y.t=48\)

\(6.t=48\)

\(\Rightarrow t=48:6=8\)

Vậy:

\(x=2\) , \(y=6\) , \(z=4\) , \(t=8\) .

9 tháng 3 2017

\(\left\{{}\begin{matrix}yt=48\\yz=24\\xy=12\\zt=32\end{matrix}\right.\)

Nhân hết lại: \(\left(yt\right)\left(yz\right)\left(xy\right).\left(zt\right)=48.24.12.32\)

Ghép lại VP: \(\left(zt\right)^2.\left(xy\right).y^2=48.24.12.32\)

Vậy thừa ra y^2: \(y^2=\dfrac{48.24.12.32}{32^2.12}=\dfrac{24.48}{32}=\dfrac{8.3.4.12}{8.4}=36\)

\(\Rightarrow\left[{}\begin{matrix}y=-6\\y=6\end{matrix}\right.\)

Thay vào từng cái trên có:

\(\left\{{}\begin{matrix}y=6\\t=8\\z=4\\x=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}y=-6\\t=-8\\z=-4\\x=-2\end{matrix}\right.\)

Kết luận: (x,y,z,t)=(2,6,4,8) ;(-2,-6,-4,-8)

16 tháng 3 2017

Xy=2; yz=3; zx=6  => x=2y

=> y=1; x=2; z=3

28 tháng 3 2018

\(yt=48;yz=24\) nên \(t=2z\). Thay vào \(zt=32\) có:

\(2z^2=32\Rightarrow z=\pm4\)

Với \(z=4\)\(t=\dfrac{32}{x}=8;y=\dfrac{24}{z}=6;x=\dfrac{12}{y}=2\)

Với \(z=-4\)\(t=\dfrac{32}{z}=-8;y=\dfrac{24}{z}=-6;x=\dfrac{12}{y}=-2\)

Vậy bộ \(x;y;z;t\) thỏa mãn là \(2;4;6;8\)\(-2;-4;-6;-8\)

28 tháng 3 2018

mk ko viết lại đề nữa nhé

=>(yzt)2=48.24.32

=> yzt = 192

=> y = 6

z = 4

t = 8

=> x = 2

Vậy (x,y,z,t) = (2, 6, 4, 8)

16 tháng 10 2017

Đang tl thì cái quảng cáo nở ra, bấm Đồng ý ở chỗ nhập Công thức thì mất sạch cả 2 bài, tiếc quá, thôi ko làm nữa

21 tháng 2

Bài 1:

 \(\dfrac{x-1000}{24}\) + \(\dfrac{x-998}{26}\) + \(\dfrac{x-996}{28}\) = 3

 \(\dfrac{x-1000}{24}\) + \(\dfrac{x-998}{26}\) + \(\dfrac{x-996}{28}\) - 3 = 0

(\(\dfrac{x-1000}{24}\) - 1) + (\(\dfrac{x-998}{26}\) - 1) + (\(\dfrac{x-996}{28}\) - 1) =0

\(\dfrac{x-1024}{24}\) + \(\dfrac{x-2024}{26}\) + \(\dfrac{x-2024}{28}\) = 0

(\(x\) - 2024).(\(\dfrac{1}{24}\) + \(\dfrac{1}{26}\) + \(\dfrac{1}{28}\)) = 0

\(x-2024\) =  0

\(x=2024\)

Vậy \(x=2024\)

9 tháng 4 2017

Ta có: (xy).(yz).(zx)=z.(4x).(9y)

=> (xyz)^2=36.xyz

=> (xyz)^2-36.xyz=0

=>(xyz).(xyz-36)=0

=> xyz=0 hoặc xyz-36=0

Nếu xyz=0 kết hợp đề bài => x=y=z=0

Nếu xyz-36=0 => xyz=36.

Mà xy=z=> z.z=36=>z^2=36=> z=6 hoặc -6

yz=4x=> xyz=x.4x=>36=4.x^2=>x^2=9=> x=3 hoặc -3

zx=9y=>xyz=y.9y=>36=9.y^2=>y^2=4=> y= 2 hoặc -2

Vậy...........

4 tháng 11 2018

từ giả thiết : xy + yz = 8 ; yz + zx = 9 ; zx + xy = 5

=> xy + yz + zx = 11

=> xy = 2 ; yz = 6 ; zx = 3

=>( xyz)2 = 36     =>  xyz =  \(\pm\)6

+ nếu xyz = 6 thì :        x = 1 ; y = 2; z = 3

+ nếu xyz = -6 thì :       x = -1 ; y = -2 ; z = -3

4 tháng 11 2018

\(xy+yz=8;yz+zx=9;zx+xy=5\)

\(\Rightarrow xy+yz+yz+zx+zx+xy=8+9+5\)

\(\Leftrightarrow2xy+2yz+2xz=22\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=22\)

\(\Leftrightarrow xy+yz+xz=11\)

\(\Rightarrow\hept{\begin{cases}xz=11-8\\xy=11-9\\yz=11-5\end{cases}\Rightarrow\hept{\begin{cases}xz=3\\xy=2\\yz=6\end{cases}}}\Rightarrow xz\cdot xy\cdot yz=3\cdot2\cdot6=36\)

\(\Leftrightarrow\left(xyz\right)^2=36=\left(\pm6\right)^2\)

TH1: \(xyz=6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=6:3\\z=6:2\\x=6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\z=3\\x=1\end{cases}}}\)

TH2: \(xyz=-6\)

\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=-6:3\\z=-6:2\\x=-6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=-2\\z=-3\\x=-1\end{cases}}}\)

Vậy 2 tập nghiệm của x, y, z là (1;2;3) và (-1;-2;-3)

22 tháng 11 2022

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{xy}{4}=\dfrac{yz}{6}=\dfrac{xz}{10}=\dfrac{xy+yz+xz}{4+6+10}=\dfrac{60}{20}=3\)

=>xy=12; yz=18; xz=30

=>xyz=căn(12*18*30)=36căn 5

=>\(z=3\sqrt{5};x=2\sqrt{5};y=\dfrac{6\sqrt{5}}{5}\)