K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

Ta có \(3x=2y\) \(\Rightarrow3x\times\frac{7}{2}=2y\times\frac{7}{2}\) \(\Rightarrow\frac{21}{2}x=7y\)

\(\Rightarrow\frac{21}{2}x=7y=5z\)

\(\Rightarrow\frac{x}{\frac{2}{21}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{2}{21}-\frac{1}{7}+\frac{1}{5}}=\frac{32}{\frac{16}{105}}=210\) (tính chất dãy các tỉ số bằng nhau)

\(\Rightarrow\frac{x}{\frac{2}{21}}=210\Rightarrow x=210\times\frac{2}{21}=20\)

và \(\frac{y}{\frac{1}{7}}=210\Rightarrow y=210\times\frac{1}{7}=30\)

và \(\frac{z}{\frac{1}{5}}=210\Rightarrow z=210\times\frac{1}{5}=42\)

2 tháng 6 2017

42 nha bn

21 tháng 10 2020

a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

        \(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58

APa dụng TC dãy TSBN ta có

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\Rightarrow x=42;y=28;z=12\)

Các câu còn lại tương tự

28 tháng 6 2017

Ta có:\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

          \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)

                   Từ (1) và (2) ta đc:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)

        

28 tháng 6 2017

3x=2y ;   7y=5z  

 <=> 21x=14y=10z

 tự làm nốt nhé

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

17 tháng 4 2018

a) 3x = 2y \(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x+y+z}{10+15+21}=\frac{32}{46}=\frac{2}{3}\)

\(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)

Vậy \(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)

10 tháng 1 2017

a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

              \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)

Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2 x 10 = 20

      y = 2 x 15 = 30

      z = 2 x 21 = 42

b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=> x = 2k ; y = 3k

=> xy = 6.k2

=> 54 = 6.k2

=> k2 = 54 : 6 = 9

=> k = 3 hoặc k = -3

=> x =  3 x 2=6 hoặc x =( -3) x 2 = -6

     y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9

10 tháng 1 2017

\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)  \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

\(\text{Áp dụng tính chất DTSBN có}\)

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)

\(\text{Vậy }x=20;y=30;z=42\)

\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(\text{Theo đề, ta có}\)

\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)

\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\)    \(y=3.3=9\text{ hoặc }y=-3.3=-9\) 

\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)

         \(\text{với k=-3\Rightarrow x=-6;y=-9}\)

8 tháng 1 2018

Ta có:\(\left|n\right|+n=\left[{}\begin{matrix}2n\text{ với }n\ge0\\0\text{ với }n< 0\end{matrix}\right.\Rightarrow n⋮2\forall n\left(\circledast\right)\)

\(|x - y|+|y-z|+|z-t|+|t-\color{red}{x}|=2017\)

\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z=2017\)

Từ \(\circledast\) ta có:

\(\left\{{}\begin{matrix}\left|x-y\right|+x-y⋮2\\\left|y-z\right|+y-z⋮2\\\left|z-t\right|+z-t⋮2\\\left|t-x\right|+t-x⋮2\end{matrix}\right.\)

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z⋮2\)

\(2017⋮̸2\) nên không tìm được \(x,y,z,t \in \mathbb{Z}\) thỏa mãn.

7 tháng 7 2017

1/ Vì x,y,z tỉ lệ với 3,5,7 nên \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x-z}{3-7}=\frac{12}{-4}=-3\)

=> x/3 = -3 => x = -9

y/5 = -3 => y = -15

z/7 = -3 => z = -21

Vậy x=-9,y=-15,z=-21

2/ 

Ta có: 3x = 4y => x/4 = y/3

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{21}{7}=3\)

=> x/4 = 3 => x = 12

y/3 = 3 => y = 9

Vậy x=12,y=9

3/ 

Ta có: 5a = 2b => a/2 = b/5 => 3a/6 = 2b/10

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{3a}{6}=\frac{2b}{10}=\frac{3a+2b}{6+10}=\frac{32}{16}=2\)

=> a/2 = 2 => a = 4

b/5 = 2 => b = 10

Vậy a=4,b=10