Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)\(\Rightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Do đó: +) \(\frac{y+z}{x}=2\)\(\Rightarrow y+z=2x\)
+) \(\frac{z+x}{y}=2\)\(\Rightarrow z+x=2y\)
+) \(\frac{x+y}{z}=2\)\(\Rightarrow x+y=2z\)
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{y+x}{y}.\frac{z+y}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2.2.2=8\)
Giải:
Ta có:
\(yz.zt=24.32\)
\(yt.z^2=24.32\)
\(48.z^2=24.32\)
\(\Rightarrow z^2=\dfrac{24.32}{48}=16\)
\(\Rightarrow z=4\)
Ta có:
\(yz=24\)
\(y.4=24\)
\(\Rightarrow y=6\)
Ta có:
\(xy=12\)
\(x.6=12\)
\(\Rightarrow x=2\)
Ta có:
\(y.t=48\)
\(6.t=48\)
\(\Rightarrow t=48:6=8\)
Vậy:
\(x=2\) , \(y=6\) , \(z=4\) , \(t=8\) .
\(\left\{{}\begin{matrix}yt=48\\yz=24\\xy=12\\zt=32\end{matrix}\right.\)
Nhân hết lại: \(\left(yt\right)\left(yz\right)\left(xy\right).\left(zt\right)=48.24.12.32\)
Ghép lại VP: \(\left(zt\right)^2.\left(xy\right).y^2=48.24.12.32\)
Vậy thừa ra y^2: \(y^2=\dfrac{48.24.12.32}{32^2.12}=\dfrac{24.48}{32}=\dfrac{8.3.4.12}{8.4}=36\)
\(\Rightarrow\left[{}\begin{matrix}y=-6\\y=6\end{matrix}\right.\)
Thay vào từng cái trên có:
\(\left\{{}\begin{matrix}y=6\\t=8\\z=4\\x=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}y=-6\\t=-8\\z=-4\\x=-2\end{matrix}\right.\)
Kết luận: (x,y,z,t)=(2,6,4,8) ;(-2,-6,-4,-8)
\(1.\)
Ta có :
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(y+z=-x\)
\(x+z=-y\)
\(\Rightarrow M=\left(-z\right)\left(-x\right)\left(-y\right)=-xyz\)
Mà \(xyz=2\)
\(\Rightarrow M=-2\)
Vậy : \(M=-2\)
\(2.\)
\(a.\)
Ta có :
\(yt.yz=48.24\)
\(\Rightarrow y^2.zt=48.24\)
Mà \(yt=32\Rightarrow y^2.32=48.24\)
\(\Rightarrow y^2=\frac{48.24}{32}\)
\(\Rightarrow y^2=36\)
\(\Rightarrow y=\pm6\)
+ Nếu \(x=6\)
Ta có : \(t=48:6=8\)
\(z=24:6=4\)
\(x=12:6=2\)
+ Nếu \(y=-6\)
Ta có : \(t=48:\left(-6\right)=-8\)
\(z=24:\left(-6\right)=-4\)
\(x=12:\left(-6\right)=-2\)
Vậy \(x=-2;y=-6;z=-4;t=-8\) hoặc \(x=2;y=6;z=4;t=8\)
\(b.\)
Ta có :
\(y+t=11\) \(\left(1\right)\)
\(y+z=9\) \(\left(2\right)\)
\(x+y=6\) \(\left(3\right)\)
\(z+t=12\) \(\left(4\right)\)
Lấy \(\left(1\right)+\left(2\right)\), ta được :
\(2y+t+z=20\)
Mà \(t+z=12\)
\(\Rightarrow2y+12=20\)
\(\Rightarrow2y=8\)
\(\Rightarrow y=4\)
Từ \(\left(2\right)\) \(\Rightarrow z=9-y=9-4=5\)
Từ \(\left(3\right)\) \(\Rightarrow x=6-y=6-4=2\)
Từ \(\left(4\right)\) \(\Rightarrow t=12-z=12-5=7\)
Vậy : \(x=2;y=4;z=5;t=7\)