K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

|x| + |y| = 6

<=> ( |x| + |y| )2 = 36

<=> |x|2 + 2|x|.|y| + |y|2 = 36

<=> x2 + 2|x|.|y| + y2 = 36

Vì x2 + y2 = 26

<=> 26 + 2|x|.|y| = 36

<=> 2|x|.|y| = 10

<=> |x|.|y| = 5

Ta có : \(\hept{\begin{cases}\left|x\right|\cdot\left|y\right|=5\\\left|x\right|+\left|y\right|=6\end{cases}}\)

<=> (|x|;|y|) ∈ {(5;1);(1;5)}

<=> (x;y) ∈ {(5;1);(-5;-1);(1;5);(-1;-5)}

Vậy ...

7 tháng 4 2020

vì lxl+lyl=6 và x2 +y2 =26 nên x,y>0,

=>  6= 3+3=2+4=4+2=1+5=5+1

xét trường hợp x + y= 3+3=6 và x2 + y=3+ 32 = 9+9= 18 (loại)

xét trường hợp x + y= 2+4=6 và x2 + y=2+ 42 = 4+16 = 20 (loại)

xét trường hợp x + y= 4+2=6 và x2 + y=4+ 22 = 16+4 = 20 (loại)

xét trường hợp x + y= 1+5=6 và x2 + y=1+ 52 = 1+25 = 26 (nhận)

xét trường hợp x + y= 5+1=6 và x2 + y=5+ 12 = 25+1 = 26 (nhận)

vậy x=5 và y=1hoac x=1 và y= 5 thỏa mãn đề bài

6 tháng 10 2021

\(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)

\(\Leftrightarrow\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\\x+y+z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\\z=2\end{matrix}\right.\)

13 tháng 8 2020

Bài làm:

Ta có: \(xy=5\)\(\Rightarrow x=\frac{5}{y}\)

Thay vào ta được:

\(x^2+y^2=26\)

\(\Leftrightarrow\frac{25}{y^2}+y^2=26\)

\(\Leftrightarrow\frac{25+y^4}{y^2}=26\)

\(\Leftrightarrow y^4-26y^2+25=0\)

\(\Leftrightarrow\left(y^4-y^2\right)-\left(25y^2-25\right)=0\)

\(\Leftrightarrow\left(y^2-1\right)\left(y^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y^2-1=0\\y^2-25=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=\pm1\\y=\pm5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm5\\x=\pm1\end{cases}}\)

Vậy ta có các cặp số (x;y) thỏa mãn: \(\left(1;5\right);\left(-1;-5\right);\left(5;1\right);\left(-5;-1\right)\)

13 tháng 8 2020

Ta có :

\(x^2+y^2=26\Rightarrow x^2+y^2+2xy=26+2.5\)

\(\Rightarrow\left(x+y\right)^2=36\Leftrightarrow x+y=6\left(1\right)\)

\(x^2+y^2=26\Rightarrow x^2+y^2-2xy=26-2.5\)

\(\Rightarrow\left(x-y\right)^2=16\Leftrightarrow x-y=4\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow x=\frac{6+4}{2}=5\)

\(\Rightarrow y=5-4=1\)

Vậy x = 5 ; y = 1

25 tháng 12 2016

Từ \(x^2y+y^2x=6\) suy ra \(3x^2y+3y^2x=18\) (nhân 2 vế với 3 rồi phân tích ra)

Cộng theo vế 2 giả thiết của đề bài ta có:

\(x^3+y^3+3x^2y+3y^2x=27\)

\(\Leftrightarrow\left(x+y\right)^3=27\Leftrightarrow x+y=3\)

\(\Leftrightarrow x=3-y\) thay vào x3+y3=9 ta có:

\(\Leftrightarrow\left(3-y\right)^3+y^3=9\)\(\Leftrightarrow\left(3-y+y\right)\left[\left(3-y\right)^2-y\left(3-y\right)+y^2\right]=9\)

\(\Leftrightarrow3\left[y^2-6y+9-3y+y^2+y^2\right]=9\)

\(\Leftrightarrow3\left[3y^2-9y+9\right]=9\)\(\Leftrightarrow9\left[y^2-3y+3\right]=9\)

\(\Leftrightarrow y^2-3y+3=1\)\(\Leftrightarrow y^2-3y+2=0\)

\(\Leftrightarrow y^2-2y-y+2=0\)\(\Leftrightarrow y\left(y-2\right)-\left(y-2\right)=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=3-y=3-2=1\\y=1\Rightarrow x=3-y=3-1=2\end{cases}}\)

P/s:ý kiến tính tổng x+y có vẻ hay r`, còn ý tưởng tìm x,y có vẻ hơi "choáng" thánh có thể tìm cách khác 

25 tháng 12 2016

(x+y)3 = x3 +y3 + 3x2y + 3xy2 = 9 +3.6 = 26

x+y = \(\sqrt[3]{26}\)

 

25 tháng 12 2016

còn vế sau ?

6 tháng 10 2018

 \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Thay số vào tính được \(xy+yz+xz=12\)

Ta có: \(x^2+y^2+z^2=xy+yz+xz\left(=12\right)\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\) 

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

Từ đó được \(x=y=z\)

Mà \(x+y+z=6\Rightarrow x=y=z=2\)

Chúc bạn học tốt.

26 tháng 6 2016

bài này hoàn toàn có thể cosi dù đề bài chưa cho dương hoac su dung bunhia ngc ( thi ko can quan tam duong hay am)