K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Ta thấy $x^2+y^2+z^2\geq 0$ với mọi $x,y,z$

Do đó $x^2+y^2+z^2=-14$ là vô lý

PT vô nghiệm.

23 tháng 7 2021

     \(x^2+y^2+z^2=4x-2y+6=-14\)

⇔ \(x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)

⇔ \(\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)

⇔ \(\left\{{}\begin{matrix}\left(x-2\right)^2\\\left(y+1\right)^2\\\left(z-3\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=-1\\z=3\end{matrix}\right.\)

28 tháng 12 2016

Vô nghiệm

29 tháng 12 2016

Có mà bạn

7 tháng 4 2020

|x| + |y| = 6

<=> ( |x| + |y| )2 = 36

<=> |x|2 + 2|x|.|y| + |y|2 = 36

<=> x2 + 2|x|.|y| + y2 = 36

Vì x2 + y2 = 26

<=> 26 + 2|x|.|y| = 36

<=> 2|x|.|y| = 10

<=> |x|.|y| = 5

Ta có : \(\hept{\begin{cases}\left|x\right|\cdot\left|y\right|=5\\\left|x\right|+\left|y\right|=6\end{cases}}\)

<=> (|x|;|y|) ∈ {(5;1);(1;5)}

<=> (x;y) ∈ {(5;1);(-5;-1);(1;5);(-1;-5)}

Vậy ...

7 tháng 4 2020

vì lxl+lyl=6 và x2 +y2 =26 nên x,y>0,

=>  6= 3+3=2+4=4+2=1+5=5+1

xét trường hợp x + y= 3+3=6 và x2 + y=3+ 32 = 9+9= 18 (loại)

xét trường hợp x + y= 2+4=6 và x2 + y=2+ 42 = 4+16 = 20 (loại)

xét trường hợp x + y= 4+2=6 và x2 + y=4+ 22 = 16+4 = 20 (loại)

xét trường hợp x + y= 1+5=6 và x2 + y=1+ 52 = 1+25 = 26 (nhận)

xét trường hợp x + y= 5+1=6 và x2 + y=5+ 12 = 25+1 = 26 (nhận)

vậy x=5 và y=1hoac x=1 và y= 5 thỏa mãn đề bài

NV
6 tháng 4 2020

1. Đặt \(\left\{{}\begin{matrix}\left|x\right|=a\ge0\\\left|y\right|=b\ge0\end{matrix}\right.\) \(\Rightarrow a+b=6\Rightarrow b=6-a\)

Thế vào \(a^2+b^2=26\)

\(\Rightarrow a^2+\left(6-a\right)^2=26\)

\(\Leftrightarrow2a^2-12a+10=0\Rightarrow\left[{}\begin{matrix}a=1\\a=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=5\\b=1\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(5;1\right);\left(-1;5\right);\left(5;-1\right);\left(1;-5\right);\left(-5;1\right);\left(-1;-5\right);\left(-5;-1\right)\)

2. Ta có: \(\left(x+y\right)^2\ge4xy\) \(\forall x;y\)

\(\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow P=x^2y^2\le\frac{\left(x+y\right)^4}{16}=1\)

Dấu "=" xảy ra khi \(x=y=1\)

1 tháng 9 2015

y.(x-2)+3x-6=2

=>y.(x-2)+3x-3.2=2

=>y.(x-2)+3.(x-2)=2

=>(y+3).(x-2)=2

Ta thấy: 2=1.2=(-1).(-2)

Vì x,y thuộc Z=>y+3,x-2 thuộc Z

Ta có bảng sau:

x-2

1

2

-1

-2

x

3

4

1

0

y+3

2

1

-2

-1

y

-1

-2

-5

-4

Vậy (x,y)=(3,-1),(4,-2),(1,-5),(0,-4)

NV
1 tháng 1

\(\Leftrightarrow x^3+y^3-x^2y-xy^2-6xy=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-xy\left(x+y+6\right)=0\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\) 

\(\Rightarrow a^3-3ab-b\left(a+6\right)=0\)

\(\Leftrightarrow a^3-2b\left(2a+3\right)=0\)

\(\Leftrightarrow8a^3+27-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9\right)-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9-16b\right)=27\)

Tới đây là pt ước số khá đơn giản, chắc em tự hoàn thành bài toán được.