Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+5=0
=> x=-5
thay x=-5 vào bt , ta có :
A = (-5)^15+3(-5)^14+5
sau đó bn tự làm nhé !!!
Với |x + 1| ≥ 0, |x + 4| ≥ 0 với mọi x nên |x + 1| + |x + 4|
Suy ra: 3x ≥ 0 hay x ≥ 0.
Với x ≥ 0 ta có: x+ 1 > 0 và x + 4 > 0 nên |x + 1| = x + 1 và |x + 4| = x + 4
Ta có: x + 1 + x + 4 = 3x
2x + 5 = 3x
5 = 3x – 2x
5 = x hay x= 5
Vậy x = 5.
* Xét x < 1 thì x - 1 < 0 và x – 4 < 0 nên:
|x - 1| = 1 - x; |x - 4| = 4 - x
Ta có: 1 - x + 4 - x = 3x
1 + 4 = 3x + x+ x
5 = 5x
5x = 5
x = 1 (không thỏa mãn điều kiện x< 1).
* Xét 1 ≤ x < 4 thì x – 1 ≥ 0 và x – 4 < 0 nên:
|x - 1| = x - 1; |x - 4| = 4 - x
Ta có: x – 1 + 4 – x = 3x
3 = 3x
3x = 3
x = 3: 3
x = 1( thỏa mãn điều kiện)
* Nếu x ≥ 4 thì x – 1 > 0 và x – 4 ≥ 0 nên:
|x - 1| = x - 1; |x - 4| = x - 4
Ta có: x - 1 + x - 4 = 3x
2x – 5 = 3x
- 5 = 3x – 2x
- 5 = x
x = - 5 ( không thỏa mãn điều kiện)
Vậy x = 1
a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..
|x + 1| + |x + 2| = 3x
Có |x + 1| \(\ge\)0 với mọi x
|x + 2| \(\ge\)0 với mọi x
=> |x + 1| + |x + 2| \(\ge\)0 với mọi x
<=> 3x \(\ge\)0
Mà 3 > 0
=> x \(\ge\)0
<=> x + 1 > 0 và x + 2 > 0
<=> |x + 1| = x + 1 và |x + 2| = x + 2
=> x + 1 + x + 2 = 3x
<=> 2x + 3 = 3x
<=> x = 3
\(\left|x-1\right|+3x=1\left(1\right)\)
\(\left(+\right)x\ge-1\) ,khi đó (1) trở thành \(x-1+3x=1=>4x-1=1=>4x=2=>x=\frac{1}{2}\)
\(\left(+\right)x< 1\),khi đó (1) trở thành \(1-x+3x=1=>1+2x=1=>2x=0=>x=0\)
Vậy.............
2(x - 3) - (3x - 5) = x + 20 - (x - 1)
=> 2x - 6 - 3x + 5 = x + 20 - x + 1
=> -x - 1 = 21
=> -x = 21 + 1
=> -x = 22
=> x= 22
Lời giải:
$\sqrt{3x-1}\geq 0$ với mọi $x\geq \frac{1}{3}$ theo tính chất căn bậc 2 số học
$-15< 0$
Do đó không tồn tại $x$ để $\sqrt{3x-1}=-15$