K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

Với |x + 1| ≥ 0, |x + 4| ≥ 0 với mọi x nên |x + 1| + |x + 4|

Suy ra: 3x ≥ 0 hay x ≥ 0.

Với x ≥ 0 ta có: x+ 1 > 0 và x + 4 > 0 nên |x + 1| = x + 1 và |x + 4| = x + 4

Ta có: x + 1 + x + 4 = 3x

     2x + 5 = 3x

             5 = 3x – 2x

             5 = x hay x= 5

Vậy x = 5.

1 tháng 3 2017

a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)

b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)

\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)

c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)

1 tháng 3 2017

Bài 1: ĐK của a: \(a\ne0\)

Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow-7a.15=3a^2.7\)

                    \(\Leftrightarrow-105a=21a^2\)

                    \(\Leftrightarrow-105a-21a^2=0\)

                    \(\Leftrightarrow a\left(-105-21a\right)=0\)

                    \(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)

Vậy:..

16 tháng 8 2016

\(x^2\)- 3x = 0

x ( x - 3 ) = 0

=> x = 0 hoặc  x - 3 = 0

                            x = 3

Vậy x = 0 hoặc x = 3

\(x^2-3x=0\)

\(x.x-3.x=0\)

 x = 3 vì 3 x 3 - 3 x 3 = 0

x ko thể = -3 vì ( -3 ) x ( -3 ) - 3 x ( -3 ) = 18

tớ năm nay lớp 6 mà làm cũng được nhỉ

3 tháng 11 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{3x}{3.2}=\frac{2z}{2.\left(-4\right)}=\frac{3x-2z}{6-\left(-8\right)}=\frac{28}{14}=2\)

\(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=2.2=4\\\frac{y}{3}=2\Rightarrow y=2.3=6\\\frac{z}{-4}=2\Rightarrow z=-4.2=-8\end{cases}}\)

Vậy x=4,y=6,z=-8

9 tháng 8 2016

\(\frac{1}{4}+\frac{1}{3}:2x=-5\)

\(\frac{1}{3}:2x=-5-\frac{1}{4}\)

\(\frac{1}{3}:2x=\frac{-21}{4}\)

\(2x=\frac{1}{3}:\frac{-21}{4}\)

\(2x=\frac{-4}{63}\)

\(x=\frac{-4}{63}:2\)

\(x=\frac{-2}{63}\)

\(\)

\(\frac{1}{4}+\frac{1}{3}:2x=-5\)

\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)

\(\Rightarrow2x=\frac{-4}{63}\)

\(\Rightarrow x=\frac{-2}{63}\)

\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)

\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)

Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)

Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)

Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)

27 tháng 4 2019

Ta có: \(\hept{\begin{cases}\left(3x-5\right)^{2010}\ge0\forall x\\\left(y-1\right)^{2012}\ge0\forall y\\\left(x-z\right)^{2014}\ge0\forall x,z\end{cases}}\)

\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\forall x,y,z\)

Do đó: ​​\(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}}\)

Vậy ...

27 tháng 4 2019

Vì mỗi hạng tử bên VT đều > 0 nên VT > 0

Dấu "=" xảy ra khi từng hạng tử vế trái bằng 0 

Tức là \(\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

4 tháng 7 2018

a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)

\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)

\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)

\(\frac{5}{6}=3x-\frac{3}{2}x-x\)

\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)

\(\frac{5}{6}=\frac{1}{2}x\)

\(x=\frac{5}{6}:\frac{1}{2}\)

\(x=\frac{5}{3}\)

b) |3x-4|+|3y+5|=0

ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)

Mà |3x-4|+|3y+5|=0 nên :

\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy x=4/3 ; y=-5/3

c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)

ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)

Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :

\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)

Vậy ...