Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương trình
Vậy tổng các nghiệm của phương trình đã cho trên đoạn 0 ; 4 π là 8 π
Số âm càng lớn thì trị tuyệt đối càng nhỏ, do đó ta chỉ cần tìm k lớn nhất sao cho nghiệm x âm
Để khỏi nhầm lẫn thì 2 tham số 1 cái đặt là k 1 cái đặt là n đi
Tìm nghiệm âm: \(\left[{}\begin{matrix}\frac{7\pi}{36}+\frac{k2\pi}{3}< 0\\\frac{11\pi}{36}+\frac{n2\pi}{3}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}k< -\frac{7}{24}\\n< -\frac{11}{24}\end{matrix}\right.\) mà k; n nguyên \(\Rightarrow k=n=-1\)
Thay vào nghiệm của pt: \(\left[{}\begin{matrix}x=\frac{7\pi}{36}-\frac{2\pi}{3}=-\frac{17\pi}{36}\\x=\frac{11\pi}{36}-\frac{2\pi}{3}=-\frac{13\pi}{36}\end{matrix}\right.\)
So sánh 2 nghiệm này ta thấy \(-\frac{13\pi}{36}>-\frac{17\pi}{36}\) nên \(x=-\frac{13\pi}{36}\) là nghiệm âm lớn nhất của pt
21.
\(\Leftrightarrow\left[{}\begin{matrix}sinx+1=0\\sinx-\sqrt{2}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)
\(x\in\left[-2017;2017\right]\Rightarrow-2017\le-\frac{\pi}{2}+k2\pi\le2017\)
\(\Rightarrow\frac{\frac{\pi}{2}-2017}{2\pi}\le k\le\frac{\frac{\pi}{2}+2017}{2\pi}\)
\(\Rightarrow-320\le k\le321\) \(\Rightarrow\) pt có 642 nghiệm
22.
\(sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm âm lớn nhất \(x=-\frac{13\pi}{36}\) ; nghiệm dương nhỏ nhất \(x=\frac{7\pi}{36}\)
Tổng 2 nghiệm: \(-\frac{13\pi}{36}+\frac{7\pi}{36}=-\frac{\pi}{6}\)
\(sinx-\sqrt{3}cosx=1\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{-\dfrac{5\pi}{6};\dfrac{\pi}{2}\right\}\)
\(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow0\le-\dfrac{\pi}{2}+k2\pi\le4\pi\)
\(\Rightarrow\dfrac{1}{4}\le k\le\dfrac{9}{4}\)
\(\Rightarrow k=\left\{1;2\right\}\)
\(\Rightarrow x=\left\{\dfrac{3\pi}{2};\dfrac{7\pi}{2}\right\}\) \(\Rightarrow\dfrac{3\pi}{2}+\dfrac{7\pi}{2}=5\pi\)