K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

suy ra 11 chia hết cho n-4(n-4+11 chia hết cho n-4)

n-4 thuộc ước của 11={+-1;+-11) suy ra N thuộc{5;3;-7;15}

7 tháng 5 2018

N+7phần n-4 nha mọi người .

DD
24 tháng 5 2021

\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).

6 tháng 3 2019

Câu 1:                      Giải

Ta có :\(\hept{\begin{cases}3^{100}=3^{4.25}=\overline{...1}\\19^{990}=19^{998+2}=19^{247.4}.19^2=\overline{...1}.\overline{...1}=\overline{...1}\end{cases}}\)

\(\Rightarrow3^{100}+19^{990}=\left(...1\right)+\left(...1\right)=\left(...2\right)⋮2\left(đpcm\right)\)

Câu 2 :         Giải

Đặt \(d=\left(12n+1,20n+2\right)\)

\(\Rightarrow\hept{\begin{cases}\left(12n+1\right)⋮d\\\left(30n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[5\left(12n+1\right)\right]⋮d\\\left[2\left(30n+2\right)\right]⋮d\end{cases}}\)

\(\Leftrightarrow\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)

hay \(\left[60n+5-60-4\right]⋮d\)

\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) tối giản với mọi n \(\inℤ\)

9 tháng 3 2019

Ta có:3,7,9 nhân lên lũy thừa 4n sẽ có chữ số tận cùng =1

1.

3100+19990=...1+19988.192

                =...1+...1. (...1)

                = ...1+...1

                =...2  chia hết cho 2(số có chữ số tận cùng là chữ số chẵn chia hết cho 2)

2.

Gọi ƯC(12n+1,30n+2)=d

ta có:    12n+1 chia hết cho d=>5(12n+1) chia hết cho d=>60n+5 chia hết cho d                       (1)

             30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d                       (2)

Từ (1) và (2),suy ra:     60n+5-(60n+4) chia hết cho d

                                  60n+5-60n-4 chia hết cho d

                                         5-4       chia hết cho d

                                          1          chia hết cho d  

Ư(1)={1;-1}

=>bất cứ số nguyên n nào cx thích hợp để 12n+1/30n+2 là P/S tối giản!

2 tháng 7 2016

Ta lấy mũ cuối là của số 52013 ta được :"3"

Ta có:53=125

Ta lấy 125 chia 7 sẽ được 17 và dư 6

2 tháng 7 2016

Ta lấy mũ cuối là của số 5 2013 ta được :"3"

Ta có:5 3=125 

ta lấy 125 chia 7 sẽ được 17 và dư 6

ủng hộ nha

thanks

25 tháng 6 2019

a) \(n^2+1⋮n-1\Leftrightarrow n^2-1+2⋮n-1\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)+2⋮n-1\Leftrightarrow2⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(2\right)=\left\{1;2\right\}\Leftrightarrow n\in\left\{2;3\right\}.\)

b) \(20⋮n\Leftrightarrow n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}.\)

c)\(28⋮n-1\Leftrightarrow n-1\inƯ\left(28\right)=\left\{1;2;4;7;14;28\right\}\Leftrightarrow n\in\left\{2;3;5;8;15;29\right\}.\)

2,

a) \(H=3^2+3.17+34.3^3⋮3;H>3\)=> H có nhiều hơn 2 ước => Tổng H là hợp số.

b) \(I=7+7^2+7^3+7^4+7^5⋮7;I>7\)=> H có nhiều hơn 2 ước => Tổng I là hợp số.

c) Ta dễ dàng thấy A có nhiều hơn 2 ước => A là hợp số.

d) \(B=147.247.347-13=147.13.19.347-13⋮13;B>13\)=> B có nhiều hơn 2 ước => B là hợp số.

25 tháng 6 2019

1 b) 20 \(⋮\)n

=> n \(\in\)Ư(20)

=> n \(\in\left\{\pm1;\pm2;\pm4\pm5;\pm10;\pm20\right\}\)

c) 28 \(⋮\)n - 1

=> n - 1 \(\in\)Ư(28)

=> n - 1 \(\in\left\{\pm1\pm2\pm4\pm7\pm14\pm28\right\}\)

Lập bảng xét 12 trường hợp

n - 11-12-24-47-714-1428-28
n203-15-38-615-1329-27

=> n \(\in\){2;0;3;-1;5;-3;8;-6;15;-13;29;-27}

2 a) H = 32 + 3.17 + 34.33

           = 3.3 + 3.17 + 34.32.3

           = 3.(3 + 17 + 34.32\(⋮\)3

=> H là hợp số

b) I = 7 + 72 + 73 + 74 + 75

      = 7 + 7.7 + 7.72 + 7.73 + 7.74

      = 7.(1 + 7 + 72 + 73 + 74\(⋮\)7

=> I là hợp số

c) A = 1.3.5.7....13.20 

        = 5.(1.3.7...13.20) \(⋮\)5

=> A là hợp số

B = 147.247.347 - 13

   = 147.13.19.347 - 13

   = 13.(147.19.347 - 1) \(⋮\)13

=> B là hợp số

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

18 tháng 12 2017

1,

a, n+3 chia hết cho 13

=> n+3 thuộc B(13)

=> n+3=13k (k thuộc N)

=> n=13k-3 

Vậy n có dạng 13k-3

b, n-3 chia hết cho n+3

=> n+3-6 chia hết cho n+3

=>6 chia hết cho n+3

=>n+3 thuộc Ư(6) = {1;2;3;6}

=>n thuộc {-2;-1;0;3}

Vì n là stn nên n thuộc {0;3}

c,2n+4+5 chia hết cho n+1

=>2n+2+7 chia hết cho n+1

=>2(n+1)+7 chia hết cho n+1

=>7 chia hết cho n+1

=>n+1 thuộc Ư(7)={1;7}

=>n thuộc {0;7}

d, 2n-7 chia hết cho 3-n

Vì 2(3-n) chia hết cho 3-n

=> 2n-7+2(3-n) chia hết cho 3-n

=> 2n-7+6-2n chia hết cho 3-n

=>-1 chia hết cho 3-n

=>3-n thuộc Ư(-1)={1;-1}

=>n thuộc {2;4}

2, 

Ta có: (p-1)p(p+1) chia hết cho 3 mà (p,3)=1 nên (p-1)(p+1) chia hết cho 3 (1)

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ => p-1 và p+1 là 2 số chẵn liên tiếp, có 1 số là bội 4 nên tích của chúng chia hết cho 8 (2)

Mà (3,8) = 1 (3)

Từ (1),(2),(3) => (p-1)(p+1) chia hết cho 24

14 tháng 11 2016
  • Nếu (1) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (2) và (3) vì m + n = 2n + 5 + n = 3n + 5, không là bội của 3, vô lý (loại)
  • Nếu (2) sai tức là 3 kết luận còn lại đúng ta thấy  mẫu thuẫn giữa (3) và (4) vì: m + 7n = m + n + 6n, là bội của 3, không là số nguyên tố (loại)
  • Nếu (4) sai tức là (3) kết luận còn lại đúng ta cũng thấy mâu thuẫn giữa (2) và (3) như trên (loại)

Do đó, (3) là kết luận sai

Từ (1) và (2) cho thấy 2n + 6 chia hết cho n

Vì 2n chia hết cho n nên 6 chia hết cho n

Mà \(n\in N\Rightarrow n\in\left\{1;2;3;6\right\}\)

Lại có: m + 7n = 2n + 5 + 7n = 9n + 5 (1)

Lần lượt thay các giá trị tìm được của n vào (1) ta thấy n = 2 thỏa mãn

=> m = 2.2 + 5 = 9

Vậy m = 9; n = 2 thỏa mãn đề bài

14 tháng 11 2016

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

14 tháng 2 2017

a) (n-7) : (n-1)
=> (n-1):(n-1)
=>(n+7) - ( n-1) : n-1
=>n+7   -    n+1:n-1
=>(n-n)+(7+1) : n-1
=>0     +  8     :n-1
=> n-1 là Ư(8)={1;2;4;8}
Xét n-1=1 => n=2
      n-1=2 => n=3
      n-1=4 => n=5
      n-1=8 => n=9
   Vậy n=2;3;5;9