Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(m+1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24
=>Phương trình luôn có hai nghiệm pb
x1^2+x2^2+(x1-2)(x2-2)=11
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2-7=0
=>m^2-2m-8=0
=>(m-4)(m+2)=0
=>m=4 hoặc m=-2
Δ=(-2)^2-4(m-1)
=-4m+4+4
=-4m+8
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
=>m<2
x1^2+x2^2-3x1x2=2m^2+|m-3|
=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9
TH1: m>=3
=>2m^2+m-3+5m-9=0
=>2m^2+6m-12=0
=>m^2+3m-6=0
=>\(m\in\varnothing\)
TH2: m<3
=>2m^2+3-m+5m-9=0
=>2m^2+4m-6=0
=>m^2+2m-3=0
=>(m+3)(m-1)=0
=>m=1 hoặc m=-3
\(x^2-\left(2m+1\right)x+m^2+1=0\)
\(\Delta=b^2-4ac=\left[-\left(2m+1\right)\right]^2-4\left(m^2+1\right)\)
\(=\left(4m^2+4m+1\right)-4m^2-4\)
\(=4m-3\)
Để pt có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow4m>3\Leftrightarrow m>\dfrac{3}{4}\)
Theo Vi ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+1\\x_1x_2=\dfrac{c}{a}=m^2+1\end{matrix}\right.\)
Ta có : \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)
\(\Leftrightarrow\left(x_1^2+x_1^2\right)+\left(2x_1+2x_2\right)+2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)-11=0\)
\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)-11=0\)
\(\Leftrightarrow4m^2+4m+1-2m^2-2+4m+2-11=0\)
\(\Leftrightarrow2m^2+8m-10=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\left(tm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
Vậy m = 1 thì thỏa mãn đề bài.
∆ = [-(2m + 1)]² - 4.1.(m² + 1)
= 4m² + 4m + 1 - 4m² - 4
= 4m - 3
Phương trình có hai nghiệm phân biệt khi ∆ > 0
⇔ 4m - 3 > 0
⇔ m > 3/4
Theo Viét ta có:
x₁ + x₂ = 2m + 1
x₁x₂ = m² + 1
Ta có:
(x₁ + 1)² + (x₂ + 1)² = 13
⇔ x₁² + 2x₁ + 1 + x₂² + 2x₂ + 1 = 13
⇔ (x₁ + x₂)² - 2x₁x₂ + 2(x₁ + x₂) + 2 = 13
⇔ (2m + 1)² - 2(m² + 1) + 2(2m + 1) + 2 = 13
⇔ 4m² + 4m + 1 - 2m² - 2 + 4m + 2 + 2 - 13 = 0
⇔ 2m² + 8m - 10 = 0
Phương trình có hai nghiệm:
m = 1 (nhận)
m = -5 (loại)
Vậy m = 1 thì phương trình có hai nghiệm thỏa mãn (x₁ + 1)² + (x₂ + 1)² = 13
Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)\(\Leftrightarrow4-4\left(m-1\right)>0\)\(\Leftrightarrow2>m\)
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
Có \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow4-5\left(m-1\right)=2m^2+\left|m-3\right|\)
\(\Leftrightarrow2m^2+\left|m-3\right|-9+5m=0\) (1)
TH1: \(m\ge3\)
PT (1) \(\Leftrightarrow2m^2+m-3-9+5m=0\)
\(\Leftrightarrow2m^2+6m-12=0\)
Do \(m\ge3\Rightarrow\left\{{}\begin{matrix}6m-12\ge6>0\\2m^2>0\end{matrix}\right.\)
\(\Rightarrow2m^2+6m-12>0\)
=>Pt vô nghiệm
TH2: \(m< 3\)
PT (1)\(\Leftrightarrow2m^2-\left(m-3\right)-9+5m=0\)
\(\Leftrightarrow2m^2+4m-6=0\) \(\Leftrightarrow2m^2-2m+6m-6=0\)
\(\Leftrightarrow2m\left(m-1\right)+6\left(m-1\right)=0\)\(\Leftrightarrow\left(2m+6\right)\left(m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\) (Thỏa)
Vậy...
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1