K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

Gọi số cần tìm là \(\overline{abc}\)

Theo đề bài ta có

+ Nếu xoá c ta được \(\overline{ab}\) và \(\overline{abc}\) chia hết cho \(\overline{ab}\)

+ Tương tự nếu xoá b ta có \(\overline{abc}\) chia hết cho \(\overline{ac}\)

+ Nếu xoá a ta có \(\overline{abc}\) chia hết cho \(\overline{bc}\)

\(\frac{\overline{abc}}{\overline{ab}}=\frac{10.\overline{ab}+c}{\overline{ab}}=10+\frac{c}{\overline{ab}}\) để c chia hết cho \(\overline{ab}\) => c=0

\(\frac{\overline{abc}}{\overline{ac}}=\frac{\overline{ab0}}{\overline{a0}}=\frac{100.a+10.b}{10.a}=10.a+\frac{b}{a}\)  => a là ước của b (1)

\(\frac{\overline{abc}}{\overline{bc}}=\frac{\overline{ab0}}{\overline{b0}}=\frac{100.a+10.b}{10.b}=1+10.\frac{a}{b}\) => b là ước của a (2)

Từ (1) và (2) => a=b và khác 0

=> n={110; 220; 330; 440; 550; 660; 770; 880; 990}

7 tháng 11 2016

Ko biết

9 tháng 11 2016

GỌI SỐ ĐÓ LÀ ABC. Ư(ABC)=(AB;AC;BC)

NÓI CHUNG SỐ ĐÓ LÀ 120

10 tháng 4 2022

Xét n+ 1 số sau: a1=5 ;a2 =55;...;an+1 =55 5... ( n+1 chữ số 5).
Theo nguyên lý Dirichlet : với n+1 số trên ắt tồn tại hai số có cùng số dư khi chia cho n. Hiệu
của hai số này là số có dạng: 55…50…0 gồm toàn chữ số 5 và chữ số 0 và chia hết cho n.
Đó là điều phải chứng minh!  Bổ sung thêm công thức nhé: n+1=n.1+1 => tồn tại 1+1=2 số có cùng số dư khi chia cho n.( Vì có n số dư tính từ 0 đến n-1).

10 tháng 4 2022

Xét n+ 1 số sau: a1=5 ;a2 =55;...;an+1 =55 5... ( n+1 chữ số 5).
Theo nguyên lý Dirichlet : với n+1 số trên ắt tồn tại hai số có cùng số dư khi chia cho n. Hiệu
của hai số này là số có dạng: 55…50…0 gồm toàn chữ số 5 và chữ số 0 và chia hết cho n.
Đó là điều phải chứng minh!  Bổ sung thêm công thức nhé: n+1=n.1+1 => tồn tại 1+1=2 số có cùng số dư khi chia cho n.( Vì có n số dư tính từ 0 đến n-1).