Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2020}=2^{2024}-8$
$2^x(1+2+2^2+...+2^{2020})=2^{2024}-8(1)$
$2^x(2+2^2+2^3+...+2^{2021})=2^{2025}-16(2)$
Lấy $(2)$ trừ $(1)$ ta có:
$2^x(2^{2021}-1)=2^{2025}-16-(2^{2024}-8)=2^{2024}(2-1)-8$
$2^x(2^{2021}-1)=2^{2024}-8=2^3(2^{2021}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
a) \(\frac{-x}{2}+\frac{2x}{3}+x+\frac{1}{4}+2x+\frac{1}{6}=\frac{3}{8}.\)
\(\frac{-x}{2}+\frac{2x}{3}+3x+\frac{5}{12}=\frac{3}{8}\)
\(x.\left(-\frac{1}{2}+\frac{2}{3}+3\right)+\frac{5}{12}=\frac{3}{8}\)
\(x\cdot\frac{19}{6}=-\frac{1}{24}\)
x = -1/76
b) \(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2.\left(2x+1\right)}-\frac{2.3}{3.\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
=> 2x + 1 = 13
2x = 12
x = 6
a)125 : x = 22 - (-1)
125 : x = 4 + 1
125 : x = 5
x = 125 : 5
x = 25
-------------------------------------------------
b) 2x - 8 = -4
2x = (-4) + 8
2x = 4
x = 4 : 2
x = 2
-----------------------------------------------------------
c) Xem lại đề.
\(125:x=2^2-\left(-1\right)\)
\(=>125:x=4+1\)
\(=>125:x=5\)
\(=>x=125:5\)
\(=>x=25\)
_____
\(2x-8=-4\)
\(=>2x=\left(-4\right)+8\)
\(=>2x=4\)
\(=>x=4:2\)
\(=>x=2\)
_______
\(6^{2x+5}=216\)
\(=>6^{2x+5}=6^3\)
\(=>2x+5=3\)
\(=>2x=3-5\)
\(=>2x=-2\)
\(=>x=\left(-2\right):2\)
\(=>x=-1\)
\(#NqHahh\)
m: (x-4)(3-x)=0
=>x-4=0 hoặc 3-x=0
=>x=4 hoặc x=3
n: =>2x-10+4=2
=>2x-6=2
=>2x=8
hay x=4
h: =>2,5x-2x=3+8
=>0,5x=11
hay x=22
b)
\(3\left(2x^2-7\right)=33\)
\(\Leftrightarrow2x^2-7=11\)
\(\Leftrightarrow2x^2=18\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
a) -2(2x - 8) + 3(4 - 2x) = -72 - 5(3x - 7)
=> -4x + 16 + 12 - 6x = -72 - 15x + 35
=> -10x + 28 = -37 - 15x
=> -10x + 15x = -37 - 28
=> 5x = -65
=> x = -65 : 5
=> x = -13
b) 3(2x2 - 7) = 33
=> 2x2 - 7 = 33 : 3
=> 2x2 - 7 = 11
=> 2x2 = 11 + 7
=> 2x2 = 18
=> x2 = 18 : 2
=> x2 = 9
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy ...
a) -45 : ( 3x - 17 ) = 32
3x - 17 = -45 : 9
3x - 17 = -5
3x = 12
x = 4
b) \(\left(2x-8\right)\left(-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-8=0\\-2x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy.....
a)
-2x+3=-7
-2x=-7-3
-2x=-10
x=-10:-2
x=5
b)(-3)x+1=-8
-3x=-8-1
-3x=-9
x=-9 :-3
x=3
c)[2x+1]=5 ( cái này à trị tuyệt đối đúng k ?) nếu dấu [ là dấu giá trị tuyệt đối
=>\(\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)
=>\(\orbr{\begin{cases}2x=4\\2x=-6\end{cases}}\)
=>\(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
vậy x \(\in\left\{2;-3\right\}\)
d)|2x-1|-3=18
|2x-1|=21
=> \(\orbr{\begin{cases}2x-1=21\\2x-1=-21\end{cases}}\)
=>\(\orbr{\begin{cases}2x=22\\2x=-20\end{cases}}\)
=>\(\orbr{\begin{cases}x=11\\x=-10\end{cases}}\)
vậy \(x\in\left\{11;-10\right\}\)
Lời giải:
a.
$(25-2x)^3:5-3^2=4^2$
$(25-2x)^3:5=4^2+3^2=25$
$(25-2x)^3=25.5=5^3$
$\Rightarrow 25-2x=5$
$\Rightarrow 2x=20$
$\Rightarrow x=10$
b.
$2.3^x=10.3^{12}+8.27^4=10.3^{12}+8.3^{12}=18.3^{12}=2.3^{14}$
$\Rightarrow 3^x=3^{14}$
$\Rightarrow x=14$