Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai....................kho......................wa.....................troi.........................thi.................lanh...............lai....................mua...................tich....................ung.....................ho..................minh....................nha.......................huhu
(2x-1)(y+2)=-10
=> (2x-1),(y+2)€ Ư(-10)
(2x-1),(y+2)€ {-1;1;2;-2;5;-5;10;-10}
mà (2x-1) là số lẻ
nên (2x-1)€ {-1;1;5;-5}
với 2x-1=-1 thì y+2=10
2x= 0. y=10-2
x=0. y=8
với 2x-1=1 thì y+2=-10
2x=2. y=-10-2
x=1. y=-12
với 2x-1=5 thì y+2=-2
2x=6. y=-2-2
x=3. y=-4
với 2x-1=-5 thì y+2=2
2x=-4. thì y=2-2
x=-2. y=0
\(\sqrt{1+\sqrt{2}}.P=\sqrt{1+2x}.\sqrt{1+\sqrt{2}}+\sqrt{1+2y}.\sqrt{1+\sqrt{2}}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{1+\sqrt{2}}.P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow\sqrt{2}\ge x+y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
\(\Rightarrow\sqrt{1+\sqrt{2}}P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\le\frac{4+2.\sqrt{2}+2.\sqrt{2}}{2}=2+2\sqrt{2}\)
\(\Leftrightarrow P\le\frac{2+2.\sqrt{2}}{\sqrt{1+\sqrt{2}}}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Mới nghĩ ra được max. Các cao nhân ai thấy sai thì sửa hộ e nhé.
áp dụng bất đẳng thức bunhiacopxki
\(P^2=\left(1.\sqrt{1+2x}+1.\sqrt{1+2y}\right)^2\le\left(1^2+1^2\right)\left(1+2x+1+2y\right)\)
\(=4\left(1+x+y\right)\)
Lại có \(\left(x.1+y.1\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.\)
\(\Rightarrow|x+y|\le\sqrt{2}.\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\Leftrightarrow-\sqrt{2}+1\le1+x+y\le\sqrt{2}+1\)
\(\Rightarrow P^2\le4\left(1+x+y\right)\le4.\left(\sqrt{2}+1\right)\)
\(\Leftrightarrow-2\sqrt{\sqrt{2}+1}\le P\le2\sqrt{\sqrt{2}+1}\)
Vậy Max \(P=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}.\)
sorry nhìu , nếu có đk x, y>=0 thì mk mới tìm được minP=3
nếu k phải thì mong cao nhân chỉ cho ak
(2x+1)+(2x+2)+...+(2x+2015)=0
Vì cứ 1 số hạng lại có 2x
Số số hạng từ 1 đến 2015 là:
(2015-1):1+1=2015(số)
Tổng dãy số là:
(2015+1)x2015:2=2031120
Do đó có 2015 2x
Ta có:
(2x+1)+(2x+2)+...+(2x+2015)=0
2015.2x+(1+2+...+2015)=0
4030x+2031120=0
4030x=-2031120
x=-2031120:4030
x=-504
Vậy x=-504
x2 - 2x+ 1 =6y2- 2x+ 2
=> x2- 2x+ 1- 2x -2 = 6y2
=> x2 - 1 = 6y2
=> xx + x - x -1 = 6y2
=> x( x+1) - (x +1) = 6y2
=> (x+1)(x-1)= 6y2 (1)
Nếu x lẻ => x+ 1 và x-1 chẵn (m)
nếu x chắn => x+ 1 và x-1 lẻ (n)
từ (m) và (n) => x+ 1 và x-1 cùng tính chẵn lẻ
+) x+ 1 và x-1 lẻ
(x+ 1)( x-1) lẻ = 6y2 chẵn ( vô lý)
+) x+ 1 và x-1 chẵn
nx : tích của hai số chẵn liên tiếp chia hết 8
=> (x+ 1)(x-1) chia hết 8
=> 6y2 chia hết 8
=> 3y2 chia hết 4
do 3 kch 4
=> y2 chia hết 4
do y là snt => y=2
Từ (1) => (x+1)(x-1) = 6x 4 = (5+1)(5-1)
=> x=5
vậy ...
=>