Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25}
B=3n+9/n-4
B=[3.(n-4)+21]/(n-4)
B=3 + 21/(n-4)
B nguyên<=>21/n-4 nguyên<=>21 chia hết cho n-4
<=>n-4 E Ư(21)={-21;-7;-3;-1;1;3;7;21}
<=>n E {-17;-3;1;3;5;7;11;25}
Vậy..........
a) ta có: \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3.\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
Để A là số nguyên
=> 21/n-4 là số nguyên
\(\Rightarrow21⋮n-4\Rightarrow n-4\inƯ_{\left(21\right)}=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
nếu n-4 = 1 => n = 5 (TM) => \(A=3+\frac{21}{5-1}=3+\frac{21}{1}=3+21=24\)
....
bn tự xét típ nha
Để A là số nguyên thì : ( dấu " : " là dấu chia hết cho )
3n + 9 : n - 4
3n - 12 + 21 : n - 4
3 ( n - 4 ) + 21 : n - 4
mà 3 ( n - 4 ) : n - 4
=> 21 : n - 4 => n - 4 thuộc Ư(21) = { 1; 3; 7; 21; -1; -3; -7; -21 }
Ta có bảng :
n-4 | 1 | 3 | 7 | 21 | -1 | -3 | -7 | -21 |
n | 5 | 7 | 11 | 25 | 3 | 1 | -3 | -17 |
Vậy,.........
A/ \(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{\left(n-4\right).3+21}{n-4}\)
ta có \(\frac{\left(n-4\right).3}{n-4}\)là số nguyên nên để A là một số nguyên thì (n--4) thuộc ước của 21
n-4 | 7 | 3 | -7 | -3 | 21 | 1 | -21 | -1 |
n | ? | ? | ? | ? | ? | ? | ? | ? |
B/\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{\left(2n-1\right).3+8}{2n-1}\)
giải như trên như bạn
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
a) \(\frac{3n+9}{n-4}\in Z\Leftrightarrow3n+9⋮n-4\)
\(n-4⋮n-4\Rightarrow3\left(n-4\right)⋮n-4\Rightarrow3n-12⋮n-4\)
\(\Rightarrow3n-12-\left(3n+9\right)⋮n-4\Rightarrow3n-12-3n-9⋮n-4\Rightarrow-21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)=\left\{1;3;7;21;-1;-3;-7;-21\right\}\)
\(\Rightarrow n\in\left\{5;7;11;25;3;1;-3;-17\right\}\)thì \(\frac{3n+9}{n-4}\in Z\)
b) \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow6n+5⋮2n-1\)
\(2n-1⋮2n-1\Rightarrow3\left(2n-1\right)⋮2n-1\Rightarrow6n-3⋮2n-1\)
\(\Rightarrow6n+5-\left(6n-3\right)⋮2n-1\Rightarrow6n+5-6n+3⋮2n-1\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{1;2;4;-1;-2;-4\right\}\Rightarrow2n\in\left\{2;3;5;0;-1;-3\right\}\)
\(\Rightarrow n\in\left\{1;1,5;2,5;0;-0.5;-1,5\right\}\)thì \(\frac{6n+5}{2n-1}\in Z\)
a, \(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
Để \(\frac{3n+9}{n-4}\)nguyên <=> n - 4 \(\in\)Ư(21) = {1;-1;3;-3;7;-7;21;-21}
n - 4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
Vậy....
b, \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Đến đây bạn làm giống bài a
câu hỏi tương tự có bài này á Nguyễn Phương Quỳnh