Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25}
a) \(\frac{3n+9}{n-4}\in Z\Leftrightarrow3n+9⋮n-4\)
\(n-4⋮n-4\Rightarrow3\left(n-4\right)⋮n-4\Rightarrow3n-12⋮n-4\)
\(\Rightarrow3n-12-\left(3n+9\right)⋮n-4\Rightarrow3n-12-3n-9⋮n-4\Rightarrow-21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)=\left\{1;3;7;21;-1;-3;-7;-21\right\}\)
\(\Rightarrow n\in\left\{5;7;11;25;3;1;-3;-17\right\}\)thì \(\frac{3n+9}{n-4}\in Z\)
b) \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow6n+5⋮2n-1\)
\(2n-1⋮2n-1\Rightarrow3\left(2n-1\right)⋮2n-1\Rightarrow6n-3⋮2n-1\)
\(\Rightarrow6n+5-\left(6n-3\right)⋮2n-1\Rightarrow6n+5-6n+3⋮2n-1\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{1;2;4;-1;-2;-4\right\}\Rightarrow2n\in\left\{2;3;5;0;-1;-3\right\}\)
\(\Rightarrow n\in\left\{1;1,5;2,5;0;-0.5;-1,5\right\}\)thì \(\frac{6n+5}{2n-1}\in Z\)
a, \(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
Để \(\frac{3n+9}{n-4}\)nguyên <=> n - 4 \(\in\)Ư(21) = {1;-1;3;-3;7;-7;21;-21}
n - 4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
Vậy....
b, \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Đến đây bạn làm giống bài a
a)B=3(n+1)/n+1 - 3/n+1
=3 - 3/n+1
để B nguyên thì n+1 thuộc ước của 3 (1;3)
suy ra n =(0;2)
câu b tương tự
A/ \(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{\left(n-4\right).3+21}{n-4}\)
ta có \(\frac{\left(n-4\right).3}{n-4}\)là số nguyên nên để A là một số nguyên thì (n--4) thuộc ước của 21
n-4 | 7 | 3 | -7 | -3 | 21 | 1 | -21 | -1 |
n | ? | ? | ? | ? | ? | ? | ? | ? |
B/\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{\left(2n-1\right).3+8}{2n-1}\)
giải như trên như bạn
\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)
Để p/s A có giá trị nguyên thì 3 chia hết cho n+4
=>n+4 E Ư(3)={-3;-1;1;3}
=>n E {-7;-5;-3;-1}
Vậy........
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B là số nguyên thì 8 chia hết cho 2n-1
Tới đây tương tự câu trên nhé
Để A nguyên thì 3n - 9 chia hết n - 4
<=> (3n - 12) + 3 chia hết n - 4
=> 3.(n - 4) + 3 chia hết n - 4
=> 3 chia hết n - 4
=> n - 4 thuộc Ư(3)
=> Ư(3) = {-1;1;-3;3}
Ta có:
n - 4 | -1 | 1 | -3 | 3 |
n | 3 | 5 | 1 | 7 |
a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)
\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)
\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)
b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)
\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow n\in\left\{1;0\right\}\) Vì \(n\in Z\)
Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21
\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)
\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Ta có bảng sau:
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
Vậy......
b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8
\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
2n-1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 1.5 (loại) | -0.5 (loại) | 2.5 (loại) | -1.5 (loại) | 4.5 (loại) | -3.5 (loại) |
Vậy \(x\in\left\{0;1\right\}\)
a. ĐK : \(n\ne-4\)
\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)
\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n + 4 | 1 | -1 | 3 | -3 |
n | -3 | -5 | -1 | -7 |
b, ĐK : \(n\ne-1\)
\(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 0 | -2 | 1 | -3 | 3 | -5 |
c,ĐK : \(n\ne\frac{1}{2}\)
\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
2n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2(loại) | -1/2(loại) | 5/2(loại) | -3/2(loại) | 9/2(loại) | -7/2(loại) |
\(N=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=3+\frac{8}{2n-1}\inℤ\Leftrightarrow\frac{8}{2n-1}\inℤ\)
mà \(n\)là số nguyên nên \(2n-1\inƯ\left(8\right)\)mà \(2n-1\)là số lẻ nên
\(2n-1\in\left\{-1,1\right\}\Leftrightarrow n\in\left\{0,1\right\}\).