Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)
\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)
\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)
\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)
\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)
Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ
\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)
\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)
e tự xét 2 th ra
b) x2y + x + xy2 + y + 2xy = 9
xy(x + y + 2) + (x + y + 2) = 11
<=> (xy + 1)(x + y + 2) = 11
Xét các TH
+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9
+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)
Bài toán :
Lời giải:
Tập xác định của phương trình
Rút gọn thừa số chung
Giải phương trình
Nghiệm được xác định dưới dạng hàm ẩn
#
=> (x2 - 8).y2 - 2xy - x2 = 0 (*)
Tính \(\Delta\)' = (-x)2 - (x2 - 8 ). (-x2) = x4 - 7x2
Để x nguyên <=> \(\Delta\)' là số cính phương <=> x4 - 7x2 = k2 ( k nguyên)
=> 4x4 - 28x2 = 4k2 => (2x2 -14)2 = (2k)2 + 196
=> (2x2 - 14)2 - (2k)2 = 196
=> (2x2 - 14 - 2k). (2x2 - 14 + 2k) = 196 = 14.14 = (-14). (-14) = 2. 98 = (-2). (-98)
Nhận xét: 2x2 - 14 - 2k; 2x2 - 14 + 2k chẵn
+) Th1 : 2x2 - 14 - 2k = - 14; 2x2 - 14 + 2k = -14
=> k = 0 => x2 = 0 => x = 0 . thay vào (*) => y
Giá trị y nguyên là các giá trị thoa mãn
các trường hợp còn lại : tương tự
+) Th2: 2x2 - 14 - 2k = 14; 2x2 - 14 + 2k = 14:
+) Th3: 2x2 - 14 - 2k = 2; 2x2 - 14 + 2k = 98
+) Th4: 2x2 - 14 - 2k = - 2; 2x2 - 14 + 2k = -98