Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> (x2 - 8).y2 - 2xy - x2 = 0 (*)
Tính \(\Delta\)' = (-x)2 - (x2 - 8 ). (-x2) = x4 - 7x2
Để x nguyên <=> \(\Delta\)' là số cính phương <=> x4 - 7x2 = k2 ( k nguyên)
=> 4x4 - 28x2 = 4k2 => (2x2 -14)2 = (2k)2 + 196
=> (2x2 - 14)2 - (2k)2 = 196
=> (2x2 - 14 - 2k). (2x2 - 14 + 2k) = 196 = 14.14 = (-14). (-14) = 2. 98 = (-2). (-98)
Nhận xét: 2x2 - 14 - 2k; 2x2 - 14 + 2k chẵn
+) Th1 : 2x2 - 14 - 2k = - 14; 2x2 - 14 + 2k = -14
=> k = 0 => x2 = 0 => x = 0 . thay vào (*) => y
Giá trị y nguyên là các giá trị thoa mãn
các trường hợp còn lại : tương tự
+) Th2: 2x2 - 14 - 2k = 14; 2x2 - 14 + 2k = 14:
+) Th3: 2x2 - 14 - 2k = 2; 2x2 - 14 + 2k = 98
+) Th4: 2x2 - 14 - 2k = - 2; 2x2 - 14 + 2k = -98
x2+2y2+2xy-y=3(y-1)
<=> x2+2xy+y2+y2-y=3(y-1)
<=> (x+y)2=3(y-1)-y(y-1)
<=> (x+y)2=(y-1)(3-y)
Nhận thấy, Vế trái (x+y)2 \(\ge\)0 Với mọi x,y
=> Để phương trình có nghiệm thì Vế phải \(\ge\)0
<=> (y-1)(3-y)\(\ge\)0 <=> 1\(\le\)y\(\le\)3
Y nguyên => y1=1; y2=2; y3=3
+/ y=1 => x=-y=-1
+/ y=2 => x=-1
+/ y=3 => x=-y=-3
Các cặp (x,y) nguyên là: (-1,1); (-1; 2); (-3,3)
\(\orbr{\begin{cases}\hept{\begin{cases}\text{x=2}\\y=0\end{cases}}\\\hept{\begin{cases}\text{x=\text{-}1}\\y=1\end{cases}}\end{cases}}\)
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+y^2+y^2+2.\frac{3}{2}y+\frac{9}{4}-\frac{25}{4}=0\)
\(\Rightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)
Do x,y nguyên
\(\Rightarrow\left(y+\frac{3}{2}\right)^2=\orbr{\begin{cases}\frac{25}{4}\\\frac{9}{4}\end{cases}}\)(chọn những số
\(\Rightarrow y=...\)
\(\Rightarrow x=...\)
\(6x^2+\left(2y-1\right)x+10y^2-28y+18=0\)
\(\Delta=\left(2y-1\right)^2-24\left(10y^2-28y+18\right)\ge0\)
\(\Leftrightarrow-236y^2+668y-431\ge0\)
\(\Rightarrow\dfrac{167-2\sqrt{615}}{118}\le y\le\dfrac{167+2\sqrt{615}}{118}\)
\(\Rightarrow y=1\)
Thế vào pt đầu ...
\(\left(1\right)\Leftrightarrow\left(x+y\right)^2+\left(y^2+3y-4\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=-\left(y-1\right)\left(y+4\right)\)
\(VT\left(2\right)\ge0\forall x,y\Rightarrow VP\left(2\right)\ge0\Rightarrow\left(y-1\right)\left(y+4\right)\le0\)
\(\Rightarrow\hept{\begin{cases}y-1\le0\\y+4\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}y-1\ge0\\y+4\le0\end{cases}\Rightarrow}-4\le y\le1\)
\(\Rightarrow y\in\left\{-4;-3;-2;-1;0;1\right\}\)
- Thử lại :
\(+)y=-4:\left(2\right)\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(+)y=-3:\left(2\right)\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
\(+)y=-2:\left(2\right)\Leftrightarrow\left(x-2\right)^2=6\)( vô nghiệm nguyên )
\(+)y=-1:\left(2\right)\Leftrightarrow\left(x-1\right)^2=6\)( vô nghiệm nguyên )
\(+)y=0:\left(2\right)\Leftrightarrow x^2=4\Leftrightarrow x=2;x=-2\)
\(+)y=1:\left(2\right)\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy các nghiệm của hpt là : \(\left(4;-4\right)\);\(\left(5;-3\right)\); \(\left(1;-3\right)\); \(\left(2;0\right)\);\(\left(-2;0\right)\);\(\left(-1;1\right)\)
Coi (1) là phương trình bậc 2 ẩn x, y là tham số
(1) có nghiệm <=> Δ' ≥ 0 <=> y2 - ( 2y2 + 3y - 4 ) ≥ 0
<=> -y2 - 3y + 4 ≥ 0 <=> -4 ≤ y ≤ 1
Vì y nguyên => y ∈ { -4 ; -3 ; -2 ; -1 ; 0 ; 1 }
+) Với y = -4 (1) trở thành x2 - 8x + 16 = 0 <=> ( x - 4 )2 = 0 <=> x = 4 (tm)
+) Với y = -3 (1) trở thành x2 - 6x + 5 = 0 <=> ( x - 1 )( x - 5 ) = 0 <=> x = 1 (tm) hoặc x = 5(tm)
+) Với y = -2 (1) trở thành x2 - 4x - 2 = 0 có Δ = 24 không là SCP nên không có nghiệm nguyên
+) Với y = -1 (1) trở thành x2 - 2x - 5 = 0 có Δ = 24 không là SCP nên không có nghiệm nguyên
+) Với y = 0 (1) trở thành x2 - 4 = 0 <=> x = ±2 (tm)
+) Với y = 1 (1) trở thành x2 + 2x + 1 = 0 <=> ( x + 1 )2 = 0 <=> x = -1(tm)
Vậy ( x ; y ) ∈ { ( 4 ; -4 ) , ( 1 ; -3 ) , ( 5 ; -3 ) , ( 2 ; 0 ) , ( -2 ; 0 ) , ( -1 ; 1 ) }