Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+Xét \(x=y=z=0\)
+ Xét trong x;y;z có 1 số bằng 0
+ Xét \(x;y;z\ne0\)
Giả sử \(0< x\le y\le z\)
\(x+y+z=xyz\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\le\frac{3}{x^2}\)
\(\Rightarrow x^2\le3\)
\(\Rightarrow x=1\)
Thay x=1 ta được:
\(\frac{1}{y}+\frac{1}{z}+\frac{1}{yz}\le\frac{3}{y}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y\in\left\{1;2;3\right\}\)
Bạn tự giải tiếp nhé
Ta có: A = \(\left|2x-2\right|+\left|2x-2013\right|\)
=> A = \(\left|2x-2\right|+\left|2013-2x\right|\)\(\ge\)\(\left|2x-2+2013-2x\right|=\left|2011\right|=2011\)
=> A \(\ge\)2011
Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) \(=\)0
=> \(2\left(x-1\right)\left(2013-2x\right)=0\)
=> \(\left(x-1\right)\left(2013-2x\right)=0\)
=> \(1\le x\le\frac{2013}{2}\)
Vậy Amin = 2011 <=> \(1\le x\le\frac{2013}{2}\)
A = |2x - 2| + |2x - 2013| = |2x - 2| + |2013 - 2x| ≥ |2x - 2 + 2013 - 2x| = |2011| = 2011
Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) ≥ 0
<=> (2x - 2)(2x - 2013) ≤ 0
<=> 1 ≤ x ≤ 2013/2
Mà x là số nguyên ....
Vậy Amin = 2011 tại 1 ≤ x ≤ 2013/2
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
Không ngờ một CTV lại đi copy mạng
Thảo nào mình thấy lạ! Sao đánh máy dài như vậy nhỉ có hai phút Tuấn Anh Phan Nguyễn:
Bạn copy ở đây phải không:
https://sites.google.com/site/toanhoctoantap/kien-thuc-toan/mot-so-phuong-phap-giai-phuong-trinh-nghiem-nguyen
Ta gọi phương trinh của x+Y=Z = XYZ LÀ (2) .Do vai trò bình đẳng của x,y,z trong phương trình, trước hết ta xét x bé hơn hoặc = y < hoặc = z
VÌ x,y,z nguyên dương nên xyz khác 0 , do x , hoặc = y ,học = z => xyz= x+y+z < hoặc = 3z => xy <3 => x thuộc {1;2;3}
Nếu xy=1 => x=y=1 . Thay vào (2) ta có : 2+z =z ( vô lý)
nẾU XY=2 , Do x < hoặc = y nên x=1,y=2 . tHAY VÀO (2) ta có ; z=3
NÊú xy =3 , do x , hoặc = y nên x=1, y=3. Thay vào (2) ta có , z=2
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1;2;3)
TK MK NHA!!
#) Giải
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
~ Hok tốt ~
Bài giải
Vì x, y, z nguyên dương nên ta giả sử \(1\le x\le y\le z\)
Theo bài ra \(1=\frac{1}{yz}+\frac{1}{yx}+\frac{1}{zx}< \frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}=\frac{3}{x^2}\)
\(\Rightarrow\text{ }x\le3\text{ }\Rightarrow\text{ }x=1\)
Thay vào đầu bài ta có : \(1+y+z=yz\text{ }\Rightarrow\text{ }y-yz+1=0\)
\(\Rightarrow\text{ }y\left(1-z\right)-\left(1-z\right)+2=0\)
\(\Rightarrow\text{ }\left(y-1\right)\left(1-z\right)=2\)
\(TH1\text{ : }y-1=1\text{ }\Rightarrow\text{ }y=2\text{ và }z-1=2\text{ }\Rightarrow\text{ }z=3\)
\(TH2\text{ : }y-1=2\text{ }\Rightarrow\text{ }y=3\text{ và }z-1=1\text{ }\Rightarrow\text{ }z=2\)
Vậy có hai cặp nghiệm nguyên thỏa mãn \(\left(1\text{ , }2\text{ , }3\right)\text{ ; }\left(1\text{ , }3\text{ , }2\right)\)