K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

#) Giải

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.  
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.  
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.  
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.  
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

                                      ~ Hok tốt ~

                                                                      Bài giải

                                       Vì x, y, z nguyên dương nên ta giả sử \(1\le x\le y\le z\)

                Theo bài ra \(1=\frac{1}{yz}+\frac{1}{yx}+\frac{1}{zx}< \frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}=\frac{3}{x^2}\)

                        \(\Rightarrow\text{ }x\le3\text{ }\Rightarrow\text{ }x=1\)

Thay vào đầu bài ta có : \(1+y+z=yz\text{ }\Rightarrow\text{ }y-yz+1=0\)

\(\Rightarrow\text{ }y\left(1-z\right)-\left(1-z\right)+2=0\)

\(\Rightarrow\text{ }\left(y-1\right)\left(1-z\right)=2\)

\(TH1\text{ : }y-1=1\text{ }\Rightarrow\text{ }y=2\text{ và }z-1=2\text{ }\Rightarrow\text{ }z=3\)

\(TH2\text{ : }y-1=2\text{ }\Rightarrow\text{ }y=3\text{ và }z-1=1\text{ }\Rightarrow\text{ }z=2\)

Vậy có hai cặp nghiệm nguyên thỏa mãn \(\left(1\text{ , }2\text{ , }3\right)\text{ ; }\left(1\text{ , }3\text{ , }2\right)\)

3 tháng 1 2018

x=1; y=2; z=3

hoặc x=-1; y=-2; z=-3

3 tháng 1 2018

+Xét \(x=y=z=0\)

+ Xét trong x;y;z có 1 số bằng 0

+ Xét \(x;y;z\ne0\)

Giả sử \(0< x\le y\le z\)

\(x+y+z=xyz\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\le\frac{3}{x^2}\)

\(\Rightarrow x^2\le3\)

\(\Rightarrow x=1\)

Thay x=1 ta được:

\(\frac{1}{y}+\frac{1}{z}+\frac{1}{yz}\le\frac{3}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y\in\left\{1;2;3\right\}\)

Bạn tự giải tiếp nhé

27 tháng 6 2019

Ta có:  A = \(\left|2x-2\right|+\left|2x-2013\right|\)

=> A = \(\left|2x-2\right|+\left|2013-2x\right|\)\(\ge\)\(\left|2x-2+2013-2x\right|=\left|2011\right|=2011\)

=> A \(\ge\)2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) \(=\)0

         => \(2\left(x-1\right)\left(2013-2x\right)=0\)

     => \(\left(x-1\right)\left(2013-2x\right)=0\)

   =>  \(1\le x\le\frac{2013}{2}\)

Vậy Amin = 2011 <=> \(1\le x\le\frac{2013}{2}\)

27 tháng 6 2019

A = |2x - 2| + |2x - 2013| = |2x - 2| + |2013 - 2x| ≥ |2x - 2 + 2013 - 2x| = |2011| = 2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) ≥ 0

<=> (2x - 2)(2x - 2013) ≤ 0

<=> 1 ≤ x ≤ 2013/2

Mà x là số nguyên ....

Vậy Amin = 2011 tại 1 ≤ x ≤ 2013/2

13 tháng 3 2017

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

13 tháng 3 2017

Không ngờ một CTV lại đi copy mạng

Thảo nào mình thấy lạ! Sao đánh máy dài như vậy nhỉ có hai phút Tuấn Anh Phan Nguyễn:

Bạn copy ở đây phải không:

https://sites.google.com/site/toanhoctoantap/kien-thuc-toan/mot-so-phuong-phap-giai-phuong-trinh-nghiem-nguyen

24 tháng 5 2017

Ta gọi phương trinh của x+Y=Z = XYZ LÀ (2) .Do vai trò bình đẳng của x,y,z trong phương trình, trước hết ta xét x bé hơn hoặc = y < hoặc = z

VÌ x,y,z nguyên dương nên xyz khác 0 , do x , hoặc = y ,học = z => xyz= x+y+z < hoặc = 3z => xy <3 => x thuộc {1;2;3}

Nếu xy=1 => x=y=1 . Thay vào (2) ta có : 2+z =z ( vô lý)

nẾU XY=2 , Do x <  hoặc = y nên x=1,y=2 . tHAY VÀO (2) ta có ; z=3

NÊú xy =3 , do x , hoặc = y nên x=1, y=3. Thay vào (2) ta có , z=2

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1;2;3) 

TK MK NHA!!

24 tháng 5 2017

MK LỚP 6 MÀ LÀM ĐƯỢC BÀI LỚP 7 ĐẤY

14 tháng 8 2017

vế phải bạn ơi phương trình thì phải có dấu bằng chứ

12 tháng 3 2017

X00+Y10+Z=XYZ

12 tháng 3 2017

X00+Y0+Z=XYZ