Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+4}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+2}.\left(x-2\right)^2=0\)
\(\left(x-2\right)^{x+2}.\left[1-\left(x-2\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{x+2}=0\\1-\left(x-2\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x-2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}< =>\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=\frac{4}{4}=1\)
\(=>\hept{\begin{cases}\frac{x}{2}=1=>x=2\\\frac{y}{3}=1=>y=3\\\frac{z}{5}=1=>z=5\end{cases}}\)
Vậy ...
tìm nghiệm của đa thức sau:
a,\(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\)
Xét \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) \(=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3}x^2+\dfrac{3}{5}=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3x}x^2=-\dfrac{3}{5}\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=\dfrac{9}{25}\\\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{9}{25}\\x=-\dfrac{9}{25}\end{matrix}\right.\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy nghiệm của đa thức \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) là \(\left\{\dfrac{9}{25};-\dfrac{9}{25};\sqrt{2};-\sqrt{2}\right\}\)
Hướng dẫn 1 phần : ko biết thì hỏi
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)
Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)
Cho \(k\left(x\right)=0\)
\(\Rightarrow\left(x+8\right)\left(x^2-\dfrac{9}{25}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+8=0\\x^2-\dfrac{9}{25}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-8\\x^2=\dfrac{9}{25}\Rightarrow x=\pm\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(k\left(x\right)\) có 3 nghiệm là \(x\in\left\{-8;\dfrac{3}{5};-\dfrac{3}{5}\right\}\)