Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = 0 => x3 - 2x2 - x + 2 = 0
=> x2. (x - 2) - (x - 2) = 0
=> (x2 - 1).(x - 2) = 0 => x2 - 1 = 0 hoặc x - 2 = 0
+) x2 - 1 = 0 => x = 1 hoặc x = -1
+) x - 2 = 0 => x = 2
Vậy đa thức có 3 nghiệm là: -1;1;2
Lời giải:
$M(x)=(6+4x)(-x+2)=0$
\(\Leftrightarrow \left[\begin{matrix} 6+4x=0\\ -x+2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức $M(x)$ là $x=\frac{-3}{2}$ và $x=2$
Nghiệm của đa thức làm cho:\(x^2-6x+5=0\Leftrightarrow x^2-x-5x+5=0\)
\(\Rightarrow x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
Tập nghiệm của pt S={1,5}
Ta có :
\(x^2-6x+5=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)-4=0\)
\(\Leftrightarrow\left(x-3\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
Vậy \(x\in\left\{1;5\right\}\)
P(x) = 0 <=> x - 32 + 1 = 0
<=> x - 9 + 1 = 0
<=> x - 8 =0
<=> x =8
Vậy 8 là nghiệm của đa thức p(x)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
\(x^2-64\cdot0,5\cdot x+3=0\\ \Leftrightarrow x^2-32x+256=253\\ \Leftrightarrow x^2-32x+16^2=253\\ \Leftrightarrow\left(x-16\right)^2=253\\ \Leftrightarrow\left[{}\begin{matrix}x-16=\sqrt{253}\\x-16=-\sqrt{253}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{253}+16\\x=-\sqrt{253}+16\end{matrix}\right.\)
Vậy...