K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để \(2^n-1⋮7\) thì \(2^n=7k+1\)

 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:
Nếu $n=3k$ với $k\in\mathbb{Z}$ thì:

$2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$

Nếu $n=3k+1$ với $k\in\mathbb{Z}$ thì:

$2^n-1=2^{3k+1}-1=2.8^k-1\equiv 2.1^k-1\equiv 1\pmod 7$

Nếu $n=3k+2$ với $k\in\mathbb{Z}$ thì:

$2^n-1=2^{3k+2}-1=4.8^k-1\equiv 4.1^k-1\equiv 3\pmod 7$

Vậy với $n=3k$ với $k\in\mathbb{Z}$ thì $2^n-1\vdots 7$

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

2 tháng 10 2020

a) Ta có: \(\frac{8n+5}{4n+1}=\frac{\left(8n+2\right)+3}{4n+1}=2+\frac{3}{4n+1}\)

Để BT nguyên

=> \(\frac{3}{4n+1}\inℤ\)<=> \(4n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Mà \(4n+1\equiv1\left(mod4\right)\)

=> \(4n+1\in\left\{1;-3\right\}\Rightarrow n\in\left\{0;-1\right\}\)

2 tháng 10 2020

b) Ta có: \(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮55\)

=> đpcm

26 tháng 6 2016

Với 2n+1 >= 0 => n>= -1/2

Để 2n + 1 (>00) chia hết cho n2 + n + 1 thì \(2n+1\ge n^2+n+1\Rightarrow n^2-n\le0\Rightarrow0\le n\le1\)mà n >= -1/2 và thuộc Z => n = 0;1. (1)

Với 2n+1 < 0 => n < -1/2

Để 2n + 1 (<0) chia hết cho n2 + n + 1 thì \(\left|2n+1\right|\ge n^2+n+1\Rightarrow-2n-1\ge n^2+n+1\Rightarrow n^2+3n+2\le0\Rightarrow\left(n+1\right)\left(n+2\right)\le0\Rightarrow-2\le n\le-1\)

mà n thuộc Z => n = -2;-1.

Thử vào ta được:

n2n+1n2 + n + 1 Kết Luận
-2-33-3 chia hết cho 3TM
-1-11-1 chia hết cho 1TM
0111 chia hết cho 1TM
1333 chia hết cho 3TM

Vậy có 4 giá trị của n là {-2;-1;0;1} để 2n+1 chia hết cho n2 + n + 1.

9 tháng 1 2018

với mọi n thuộc N đều được viết dưới dạng : 3k , 3k + 1, 3k + 2

với n = 3k thì :

2n - 1 = 23k - 1 = 8k - 1 = ( 8 - 1 ) . ( 8k-1 + 8k-2 + ... + 8 + 1 ) = 7M \(⋮\)7

với n = 3k + 1 thì :

2n - 1 = 23k+1 - 1 = 2 . 23k - 1 = 2 . 8k - 1 = 2 . ( 8k - 1 ) + 1 = 2 . 7M + 1 chia 7 dư 1

với n = 3k +2 thì :

2n - 1 = 23k+2 - 1 = 4 . 8k - 1 = 4 . ( 8k - 1 ) + 3 = 4 . 7M + 3 chia 7 dư 3

Vậy với n = 3k thì 2n - 1 chia hết cho 7