Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+2x^2+15=3x^2+15\)
Thực hiện phép chia, ta được:
Suy ra để \(x^2+2x^2+15\) chia hết cho x + 3 thì - (9 - y)x + (15 - 3y) = 0
Hay - (9 - y)x = 15 - 3y
Khi đó \(x=\dfrac{15-3y}{-9+y}\) hay \(\left(15-3y\right)⋮\left(-9+y\right)\)
Hay \(\left[\left(15-3y\right)-3\left(-9+y\right)\right]⋮\left(-9+y\right)\)
Hay \(42⋮\left(-9+y\right)\)
Khi đó (-9 + y) ϵ Ư(42) = {1; -1; 2; -2; 3; -3; 6; -6; 7; -7; 14; -14; 21; -21; 42; -42}
Xét bảng
-9 + y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 7 | -7 | 14 | -14 | 21 | -21 | 42 | -42 |
y | 10 | 8 | 11 | 7 | 12 | 6 | 15 | 3 | 16 | 2 | 23 | -5 | 30 | -12 | 51 | -33 |
\(x=\dfrac{15-3y}{-9+y}\) | -15 | 9 | -9 | 3 | -7 | 1 | -5 | -1 |
-33/7 (loại) |
-9/7 (loại) | -27/7 (loại) | -15/7 (loại) | -25/7 (loại) | -17/7 (loại) | -23/7 (loại) | -19/7 (loại) |
Vậy để \(x^2+2x^2+15\) chia hết cho x + 3 thì x ϵ {-15; 9; -9; 3; -7; 1; -5; -1}
\(A=\dfrac{7a^6-5a^3+a^2}{3a^n}=\dfrac{7}{3}a^{6-n}-\dfrac{5}{3}a^{3-n}+\dfrac{1}{3}\cdot a^{2-n}\)
Để đây là phép chia hết thì 6-n>=0 và 3-n>=0 và 2-n>=0
=>n<=2
=>\(n\in\left\{0;1;2\right\}\)
a) (-5x3 + 15x2 + 18x) : (-5x)
= (-5x3) : (-5x) + 15x2 : (-5x) + 18x : (-5x)
= [(-5): (-5)] . (x3 : x) + [15 : (-5)] . (x2 : x) + [18 : (-5)]. (x : x)
= x2 – 3x - \(\dfrac{{18}}{5}\)
b) (-2x5 – 4x3 + 3x2) : 2x2
= (-2x5 : 2x2) + (-4x3 : 2x2) + (3x2 : 2x2)
= [(-2) : 2] . (x5 : x2) + [(-4) : 2] . (x3 : x2) + (3 : 2) . (x2 : x2)
= -x3 – 2x + \(\dfrac{3}{2}\)
`#3107.101107`
`A(x) = 3x - 9x^2 + 4x + 5x^3 + 7x^2 + 1`
`= (3x + 4x) - (9x^2 - 7x^2) + 5x^3 + 1`
`= 7x - 2x^2 + 5x^3 + 1`
`B(x) = 5x^3 - 3x^2 + 7x + 10`
`A(x) - B(x) = 7x - 2x^2 + 5x^3 + 1 - (5x^3 - 3x^2 + 7x + 10)`
`= 7x - 2x^2 + 5x^3 + 1 - 5x^3 + 3x^2 - 7x - 10`
`= (7x - 7x) + (3x^2 - 2x^2) + (5x^3 - 5x^3) - (10 - 1)`
`= x^2 - 9`
`=> C(x) = x^2 - 9`
`C(x) = 0`
`=> x^2 - 9 = 0`
`=> x^2 = 9 => x^2 = (+-3)^2 => x = +-3`
Vậy, nghiệm của đa thức `C(x)` là `x \in {3; -3}.`
2x78 = 2000 + 100x + 78=
2078 +100x = 2074 +102x + (4-2x)
Do 2074 +102x = 17.122 + 17.6x : 17
=> 4-2x : 17
T/hợp 1: 4-2x=0 => x=2
T/hợp 2: 4-2x=17 (loại), do x nguyên <=9
Ta có: \(\overline{2x78}=17\left(122+6x\right)+2\left(2-x\right)⋮17\Leftrightarrow x=2\)
Vậy x = 2
Vì đa thức P(x) có nghiệm là 1 nên
Thay x = 1 vào đa thức trên ta được :
Đặt \(P\left(x\right)=a-3=0\Leftrightarrow a=3\)
Vậy với x = 1 thì a = 3
Vì: 1 là nghiệm của P(x)
Nên: P(1)=0
P(1)=a1-3=0
Hay: a-3=0
Suy ra: a=3
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)