K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

Pt có nghiệm khi \(\Delta\ge0\)

                        \(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)

                       \(\Leftrightarrow m^2-2m+1-20m+20\ge0\)

                        \(\Leftrightarrow m^2-22m+21\ge0\)

                        \(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)

Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)

\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)

\(\Leftrightarrow1-2m+m^2=25m-25\)

\(\Leftrightarrow m^2-27m+26=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)

Vậy .........

29 tháng 4 2023

\(x^2-2\left(m+4\right)x+m^2+8m-9=0\left(1\right)\)

Ta giải \(\Delta=[-2\left(m+4\right)]^2-4\left(m^2+8m-9\right)=100>0\forall m\)

suy ra pt có 2 nghiệm phân biệt \(x_1,x_2\forall m\).

Ta có: \(x_1=m-1\)\(x_2=m+1\) (thay \(\Delta\) vào công thức tìm nghiệm phân biệt).

Gọi \(A=\dfrac{x_1^2+x_2^2-48}{x_1^2+x_2^2}\).

\(\Rightarrow A=1-\dfrac{48}{x_1^2+x_2^2}=1-\dfrac{48}{\left(m-1\right)^2+\left(m+1\right)^2}=1-\dfrac{24}{m^2+1}\).

Để biểu thức A nguyên thì \(\dfrac{24}{m^2+1}\) nguyên, suy ra \(m^2+1\inƯ\left(24\right)\).

\(\Rightarrow m^2+1\in\left\{1;2;4;6;8;12;24\right\}\)

\(\Rightarrow m\in\left\{0;\pm1\right\}\) (vì m nhận giá trị nguyên)

Vậy \(m\in\left\{0;\pm1\right\}\) là giá trị cần tìm.

7 tháng 5 2023

Mình chỉnh sửa lại một chút nhé.

\(A=1-\dfrac{24}{m^2+2}\)

\(\Rightarrow...\)\(\Rightarrow\)\(m^2+2\in\left\{1;2;3;4;6;8;12;24\right\}\)

\(\Rightarrow m\in\left\{0;\pm1;\pm2\right\}\)

Vậy...

16 tháng 1 2019

thoa man cai j co ?

25 tháng 2 2022

\(\Delta'=9-\left(m+5\right)=4-m\)

để pt có 2 nghiệm \(4-m\ge0\Leftrightarrow m\le4\)

\(\left(x_1+x_2\right)^2-5x_1x_2=1\Rightarrow36-5\left(m+5\right)=1\)

\(\Leftrightarrow m+5=7\Leftrightarrow m=2\left(tm\right)\)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

17 tháng 6 2022

ko biết làm

17 tháng 7 2021

a, với =-3

\(=>x^2-6x+6=0\)

\(\Delta=\left(-6\right)^2-4.6=12>0\)

=>pt có 2 nghiệm phân biệt x3,x4

\(=>\left[{}\begin{matrix}x3=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x4=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)

b, \(\Delta=\left(2m\right)^2-4\left(m^2+m\right)=4m^2-4m^2-4m=-4m\)

pt đã cho đề bài có 2 nghiệm phân biệt x1,x2 khi

\(-4m>0< =>m< 0\)

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=-2m\\x1x2=m^2+m\end{matrix}\right.\)

có \(\left(x1-x2\right)\left(x1^2-x2^2\right)=32\)

\(< =>\left(x1-x2\right)^2\left(x1+x2\right)=32\)

\(< =>\left[x1^2-2x1x2+x2^2\right]\left(-2m\right)=32\)

\(< =>\left[\left(x1+x2\right)^2-4x1x2\right]\left(-2m\right)=32\)

\(< =>\left[\left(-2m\right)^2-4\left(m^2+m\right)\right]\left(-2m\right)=32< =>m=2\)(loại)

Vậy \(m\in\varnothing\)

 

 

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:
a. Với $m=-3$ thì pt trở thành:

$x^2-6x+6=0\Leftrightarrow x=3\pm \sqrt{3}$

b. Để pt có 2 nghiệm thì: $\Delta'=m^2-(m^2+m)=-m\geq 0$

$\Leftrightarrow m\leq 0$

Áp dụng định lý Viet: $x_1+x_2=-2m; x_1x_2=m^2+m$

Khi đó:
$(x_1-x_2)(x_1^2-x_2^2)=32$

$\Leftrightarrow (x_1-x_2)^2(x_1+x_2)=32$

$\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)=32$

$\Leftrightarrow [(-2m)^2-4(m^2+m)](-2m)=32$

$\Leftrightarrow 8m^2=32$

$\Leftrightarrow m^2=4$

$\Rightarrow m=-2$ (do $m\leq 0$)

Vây.........

theo dõi em ik idol

25 tháng 3 2022

má tưởng có người trả lời =))))))))

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined