K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

\(\Delta'=9-\left(m+5\right)=4-m\)

để pt có 2 nghiệm \(4-m\ge0\Leftrightarrow m\le4\)

\(\left(x_1+x_2\right)^2-5x_1x_2=1\Rightarrow36-5\left(m+5\right)=1\)

\(\Leftrightarrow m+5=7\Leftrightarrow m=2\left(tm\right)\)

theo dõi em ik idol

25 tháng 3 2022

má tưởng có người trả lời =))))))))

NV
21 tháng 3 2022

\(\Delta'=9-6m+m^2=\left(m-3\right)^2\ge0;\forall m\)

\(\Rightarrow\) Pt luôn có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=6m-m^2\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên: \(x_1^2+6x_1+6m-m^2=0\Leftrightarrow2x_1^2+12x_1=2m^2-12\)

\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+2m^2-12m+72=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(m^2-6m+36\right)+2m^2-12m+72=0\)

\(\Leftrightarrow\left(x_1-x_2+2\right)\left(m^2-6m+36\right)=0\)

\(\Leftrightarrow x_1-x_2+2=0\) (do \(m^2-6m+36=\left(m-3\right)^2+27>0;\forall m\))

Kết hợp với \(x_1+x_2=-6\) ta được: 

\(\left\{{}\begin{matrix}x_1-x_2=-2\\x_1+x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-4\\x_2=-2\end{matrix}\right.\)

Thế vào \(x_1x_2=6m-m^2\)

\(\Rightarrow8=6m-m^2\Rightarrow m^2-6m+8=0\Rightarrow\left[{}\begin{matrix}m=2\\m=4\end{matrix}\right.\)

NV
21 tháng 3 2022

\(\Delta'=\left(m-1\right)^2+2m=m^2+1>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)

Cộng vế với vế: \(x_1x_2+x_1+x_2=-2\) (1)

\(x_1^2+x_1-x_2=5-2m\)

\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\) (2)

Cộng vế với vế (1) và (2):

\(\Rightarrow x_1^2+2x_1=3\)

\(\Leftrightarrow x_1^2+2x_1-3=0\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-\dfrac{3}{2}\\x_1=-3\Rightarrow x_2=-\dfrac{1}{2}\end{matrix}\right.\) (thế \(x_1\) vào (1) để tính ra \(x_2\))

Thế vào \(x_1x_2=-2m\Rightarrow m=-\dfrac{x_1x_2}{2}\Rightarrow m=\pm\dfrac{3}{4}\)

9 tháng 5 2022
9 tháng 5 2022

không nhìn được bạn ơi

 

4 tháng 3 2022

a, Thay x = -5 ta đc 

\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)

Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)

b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)

Vậy pt trên luôn có 2 nghiệm pb 

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)

\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)

a: Thay x=-5 vào pt, ta được:

25-5m-35=0

=>5m+10=0

hay m=-2

Theo đề, ta có: \(x_1x_2=-35\)

nên \(x_2=7\)

b: \(ac=-1\cdot35< 0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)

\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)

hay \(m\in\left\{4;-4\right\}\)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)