K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 7 2022

\(B=m^2-2.\dfrac{5}{2}.m+\dfrac{25}{4}+\dfrac{3}{4}=\left(m-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(B_{min}=\dfrac{3}{4}\) khi \(m=\dfrac{5}{2}\)

16 tháng 7 2022

\(B=m^2-5m+7\)

\(B=m^2-2.\dfrac{5}{2}.m+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+7\)

\(B=\left(m-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{5}{2}\)

Vậy \(Min_B=\dfrac{3}{4}\) khi `m=5/2`

30 tháng 3 2023

\(x^2-\left(m+2\right)x+m=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(m+2\right)^2-4m\ge0\)

\(\Leftrightarrow m^2+4\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)

\(A=x_1^3-\left(m+1\right)x_1^2+mx_1-5m\)

\(=x_1^3-\left(x_1+x_2-1\right)x_1^2+x_1\left(m-5\right)\)

\(=x_1^3-x_1^3-x_1^2x_2+x_1^2+x_1\left(x_1x_2-5\right)\)

\(=-x_1^2x_2+x_1^2+x_1^2x_2-5x_1\)

\(=x_1^2-5x_1=\left(x_1^2-5x_1+\dfrac{25}{4}\right)-\dfrac{25}{4}=\left(x_1-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)

Vậy \(MinA=-\dfrac{25}{4}\).

 

6 tháng 5 2020

\(A=\frac{m^2+5m+3}{m^2+m+1}\)

\(\Leftrightarrow A\cdot m^2+A\cdot m+A=m^2+5m+3\)

\(m^2\left(A-1\right)+m\left(A-5\right)+\left(A-3\right)=0\)

Xét \(\Delta=\left(A-5\right)^2-4\left(A-3\right)\left(A-1\right)\)

\(=A^2-10A+25-4\left(A^2-4A+3\right)\)

\(=-3A^2+6A+12\)

Điều kiện có nghiệm là \(\Delta\ge0\) bám vào đk mà đánh giá tiếp

7 tháng 5 2020

Xét A = 1 nữa.

a: Δ=(2m+2)^2-4(m-2)

=4m^2+8m+4-4m+8

=4m^2+4m+12

=(2m+1)^2+11>=11>0

=>Phương trình luôn cóhai nghiệm phân biệt

b: x1^2+2(m+1)x2-5m+2

=x1^2+x2(x1+x2)-4m-m+2

=x1^2+x1x2+x2^2-5m+2

=(x1+x2)^2-2x1x2+x1x2-5m+2

=(2m+2)^2-(m-2)-5m+2

=4m^2+8m+4-m+2-5m+2

=4m^2+2m+8

=4(m^2+1/2m+2)

=4(m^2+2*m*1/4+1/16+31/16)

=4(m+1/4)^2+31/4>=31/4

Dấu = xảy ra khi m=-1/4

\(P=\left(m^2-5m+\frac{25}{4}\right)-\frac{13}{4}=\left(m-\frac{5}{2}\right)^2-\frac{13}{4}\)

Vì \(m\ge3 \Rightarrow m-\frac{5}{2}\ge\frac{1}{2} \Rightarrow\left(m-\frac{5}{2}\right)^2\ge\frac{1}{4} \Rightarrow\left(m-\frac{5}{2}\right)^2-\frac{13}{4}\ge\frac{1}{4}-\frac{13}{4}\)

\(\Rightarrow P\ge-3\)

\(MinP=-3\Leftrightarrow m=3\)

1 tháng 6 2016

trả hiểu cái gì cả

1 tháng 6 2016

trả hiểu cái gì cả

NV
17 tháng 1 2021

\(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)\ge0\)

\(\Leftrightarrow m+1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(B=\left(x_1+x_2\right)^2-2x_1x_2+7\)

\(B=\left(2m-2\right)^2-2\left(m^2-3m\right)+7\)

\(B=2m^2-2m+11\)

\(B=2m\left(m-1\right)+11\ge11\)

\(B_{min}=11\) khi \(m=1\)

30 tháng 3 2021

M = |3x - 7| + |3x + 2| + 2021 = |7 - 3x| + |3x + 2| + 2021 \(\ge\) |7 - 3x + 3x + 2| + 2021 = 9 + 2021 = 2030 (Tính chất giá trị tuyệt đối)

Dấu "=" xảy ra \(\Leftrightarrow\) 7 - 3x = 3x + 2 \(\Leftrightarrow\) 6x = 5 \(\Leftrightarrow\) x = \(\dfrac{5}{6}\)

Vậy MinM = 2030 \(\Leftrightarrow\) x = \(\dfrac{5}{6}\)

Chúc bn học tốt!

AH
Akai Haruma
Giáo viên
31 tháng 3 2021

Đối với BDT dạng $|a|+|b|\geq |a+b|$ thì dấu bằng xảy ra khi $ab\geq 0$ chứ không phải $a=b$ bạn nhé!

25 tháng 2 2017

Ta có: \(x^2-2mx+m-7=0\)

Ta có: \(\Delta'=m^2-m+7>0\)

\(\Rightarrow\)Phương trình luôn có 2 nghiệm phân biệt

Theo vi - et thì (sao không tin ổng, ổng đáng tin cậy lắm đấy :D)

\(\hept{\begin{cases}x_1+x_2=2m\\x_1^2.x_2^2=m-7\end{cases}}\)

Theo đề bài ta có:

\(P=|x_1-x_2|\)

\(\Leftrightarrow P^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(2m-1\right)^2+27\ge27\)

\(\Rightarrow P\ge3\sqrt{3}\)

Dấu =  xảy ra khi \(m=\frac{1}{2}\)

24 tháng 2 2017

x2 - 2mx + m - 7 = 0

(a= 1; b=-2m; c=m-7)

<=> \(\Delta\)= b2-4ac

\(\Leftrightarrow\)\(\Delta\)= (-2m)2 -4\(\times\)1\(\times\)(m-7)

\(\Leftrightarrow\)\(\Delta\)= 4m2-4m+28

= 4m2-4m+28 >= 0

vậy pt có 2 ng với mọi m

Theo đl vi-et, t/c:

s=x1+x2=\(\frac{-b}{a}\)=-2m

p=x1\(\times\)x2=\(\frac{c}{a}\)= m + 7

x1 + x2 + x1 \(\times\)x2

= S + P

= -2m + m+7

= -m +7

min A = 0 khi

-m+7=0

\(\Rightarrow\)m=7

12 tháng 2 2023

a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)

(*) \(m\ne0\) Phương trình có nghiệm

\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\) 

Hệ thức Viet kết hợp 4x1 + 3x2 = 1

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)

\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)

\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)

\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1