Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
Ta có:
\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)
Nhận xét: a,b,c không âm nên theo BĐT Cô - si, ta có:
\(b^2+1\ge2\sqrt{b^2.1}=2b\)
=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)
=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)
Tương tự, ta cũng có:
\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)
\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)
Vậy ta suy ra
\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)
Mà a+b+c = 3 nên suy ra:
\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge ab+ac+bc\)
<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
<=> \(3^2\ge3\left(ab+ac+bc\right)\)
<=> \(ab+ac+bc\le3\)
<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)
<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)
Từ 1 và 2 => \(M\ge\frac{3}{2}\)
Dấu bằng xảy ra <=> a=b=c=1
Câu 1:
\(y^2+yz+z^2=1-\frac{3x^2}{2}\)
\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)
\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)
\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)
\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)
\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)
Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)
\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)
Câu 2:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Câu 3:
\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )
\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng BĐT Cauchy:
\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)
\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
Câu 4:
Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)
\(M=a^2-2ab+3b^2-2a+1\)
\(M=a^2-a\left(2b+2\right)+3b^2+1\)
\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)
\(=-8b^2+8b\)
\(=-8b\left(b+1\right)\ge0\)
Vì \(b\ge0\) nên \(-8b\left(b+1\right)\le0\)
Dấu "=" xảy ra \(\Leftrightarrow b=0\)
Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=1\)
Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Max nè : \(\frac{2m+1}{m^2+2}=\frac{m^2+2-m^2+2m-1}{m^2+2}=1+\frac{-\left(m-2\right)^2}{m^2+2}\le1\)
Min nhé: \(\frac{2m+1}{m^2+2}=\frac{4m+2}{2m^2+4}=\frac{-m^2-2+m^2+4m+4}{2\left(m^2+2\right)}\ge-\frac{1}{2}\)
Dấu bằng xảy ra : Max m=2, Min m =-2
Lời giải:
ĐK: $-\sqrt{3}\leq x\leq \sqrt{3}$
Ta thấy:
$x^2\geq 0, \forall x\in [-\sqrt{3}; \sqrt{3}]$
$\Rightarrow 3-x^2\leq 3\Rightarrow \sqrt{3-x^2}\leq \sqrt{3}$
$\Rightarrow 2-\sqrt{3-x^2}\geq 2-\sqrt{3}$
$\Rightarrow A=\frac{1}{2-\sqrt{3-x^2}}\leq \frac{1}{2-\sqrt{3}}=2+\sqrt{3}$
Vậy $A_{\max}=2+\sqrt{3}$ khi $x^2=0\Leftrightarrow x=0$
-----------------
$\sqrt{3-x^2}\geq 0$ với mọi $x\in [-\sqrt{3};\sqrt{3}]$
$\Rightarrow 2-\sqrt{3-x^2}\leq 2$
$\Rightarrow A=\frac{1}{2-\sqrt{3-x^2}}\geq \frac{1}{2}$
Vậy $A_{\min}=\frac{1}{2}$ khi $3-x^2=0\Leftrightarrow x=\pm \sqrt{3}$
Câu 2:
\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)
\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)
\(\Rightarrow-26\le A-4\le26\)
\(\Rightarrow-22\le A\le30\)
\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)
\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)
Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)
\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)
\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)
\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)
Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)
Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)
\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)
\(A=\frac{m^2+5m+3}{m^2+m+1}\)
\(\Leftrightarrow A\cdot m^2+A\cdot m+A=m^2+5m+3\)
\(m^2\left(A-1\right)+m\left(A-5\right)+\left(A-3\right)=0\)
Xét \(\Delta=\left(A-5\right)^2-4\left(A-3\right)\left(A-1\right)\)
\(=A^2-10A+25-4\left(A^2-4A+3\right)\)
\(=-3A^2+6A+12\)
Điều kiện có nghiệm là \(\Delta\ge0\) bám vào đk mà đánh giá tiếp
Xét A = 1 nữa.