K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

\(A=\frac{m^2+5m+3}{m^2+m+1}\)

\(\Leftrightarrow A\cdot m^2+A\cdot m+A=m^2+5m+3\)

\(m^2\left(A-1\right)+m\left(A-5\right)+\left(A-3\right)=0\)

Xét \(\Delta=\left(A-5\right)^2-4\left(A-3\right)\left(A-1\right)\)

\(=A^2-10A+25-4\left(A^2-4A+3\right)\)

\(=-3A^2+6A+12\)

Điều kiện có nghiệm là \(\Delta\ge0\) bám vào đk mà đánh giá tiếp

7 tháng 5 2020

Xét A = 1 nữa.

1 tháng 5 2019

Áp dụng bdtd quen thuộc : 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 5 2019

Chứng minh bđt nha ( quên mất )

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)

Nhân từng vế của 2 bđt ta được đpcm

Dấu "=" khi \(a=b=c\)

4 tháng 6 2016

Ta có:

\(\frac{a}{b^2+1}=\frac{a\left(b^2+1\right)-ab^2}{b^2+1}=a-\frac{ab^2}{b^2+1}\)

Nhận xét:  a,b,c không âm nên theo BĐT Cô - si, ta có:

\(b^2+1\ge2\sqrt{b^2.1}=2b\)

=> \(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

=> \(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)

=> \(\frac{a}{b^2+1}\ge a-\frac{ab}{2}\)

Tương tự, ta cũng có: 

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2}\)

\(\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)

Vậy ta suy ra

\(M=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\)

Mà a+b+c = 3 nên suy ra:

\(M\ge3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ac}{2}\right)\)(1)

Ta có:

 \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

<=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

<=> \(a^2+b^2+c^2\ge ab+ac+bc\)

<=> \(a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3ab+3ac+3bc\)

<=> \(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

<=> \(3^2\ge3\left(ab+ac+bc\right)\)

<=> \(ab+ac+bc\le3\)

<=> \(\frac{ab+ac+bc}{2}\le\frac{3}{2}\)

<=> \(3-\frac{ab+ac+bc}{2}=3-\frac{3}{2}=\frac{3}{2}\) (2)

Từ 1 và 2 => \(M\ge\frac{3}{2}\)

Dấu bằng xảy ra <=> a=b=c=1

5 tháng 2 2020

Câu 1:

\(y^2+yz+z^2=1-\frac{3x^2}{2}\)

\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)

\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)

\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)

\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)

\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)

Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)

\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)

Câu 2:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Câu 3:

\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )

\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)

Áp dụng BĐT Cauchy:

\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)

\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

Câu 4:

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)

\(M=a^2-2ab+3b^2-2a+1\)

\(M=a^2-a\left(2b+2\right)+3b^2+1\)

\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)

\(=-8b^2+8b\)

\(=-8b\left(b+1\right)\ge0\)

\(b\ge0\) nên \(-8b\left(b+1\right)\le0\)

Dấu "=" xảy ra \(\Leftrightarrow b=0\)

Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\)

Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

5 tháng 2 2020

Cau này e nghĩ không đáng là câu hỏi hay:v

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Max nè : \(\frac{2m+1}{m^2+2}=\frac{m^2+2-m^2+2m-1}{m^2+2}=1+\frac{-\left(m-2\right)^2}{m^2+2}\le1\)

Min nhé: \(\frac{2m+1}{m^2+2}=\frac{4m+2}{2m^2+4}=\frac{-m^2-2+m^2+4m+4}{2\left(m^2+2\right)}\ge-\frac{1}{2}\)

Dấu bằng xảy ra : Max m=2, Min m =-2

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:
ĐK: $-\sqrt{3}\leq x\leq \sqrt{3}$

Ta thấy:

$x^2\geq 0, \forall x\in [-\sqrt{3}; \sqrt{3}]$

$\Rightarrow 3-x^2\leq 3\Rightarrow \sqrt{3-x^2}\leq \sqrt{3}$

$\Rightarrow 2-\sqrt{3-x^2}\geq 2-\sqrt{3}$

$\Rightarrow A=\frac{1}{2-\sqrt{3-x^2}}\leq \frac{1}{2-\sqrt{3}}=2+\sqrt{3}$

Vậy $A_{\max}=2+\sqrt{3}$ khi $x^2=0\Leftrightarrow x=0$

-----------------

$\sqrt{3-x^2}\geq 0$ với mọi $x\in [-\sqrt{3};\sqrt{3}]$

$\Rightarrow 2-\sqrt{3-x^2}\leq 2$

$\Rightarrow A=\frac{1}{2-\sqrt{3-x^2}}\geq \frac{1}{2}$

Vậy $A_{\min}=\frac{1}{2}$ khi $3-x^2=0\Leftrightarrow x=\pm \sqrt{3}$

NV
12 tháng 4 2020

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

NV
12 tháng 4 2020

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)