Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)
\(A\le2\sqrt{5}..\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$
$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)
Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$
----------------------
Áp dụng BĐT Bunhiacopkxy:
$A^2\leq (x+4+6-x)(1+1)=10.2=20$
$\Rightarrow A\leq \sqrt{20}$
Vậy $A_{\max}=\sqrt{20}$
x2 + y2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\) = \(\sqrt{5}-2+3-\sqrt{5}=1\)
Ta có
P = xy \(\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(M^2=8-x+x-4+2\sqrt{8-x}\sqrt{x-4}=4+2\sqrt{8-x}\sqrt{x-4}\ge4\)
\(\Rightarrow M\ge2.\) Đẳng thức xảy ra khi \(2\sqrt{8-x}\sqrt{x-4}=0\Leftrightarrow x=4\text{ hoặc }x=8\)
GTNN của M là 2.
Áp dụng bất đẳng thức Côsi, ta có: \(2\sqrt{x-4}\sqrt{8-x}\le\left(x-4\right)+\left(8-x\right)=4\)
\(\Rightarrow M^2\le4+4=8\)
\(\Rightarrow M\le2\sqrt{2}.\)
Đẳng thức xảy ra khi \(\sqrt{x-4}=\sqrt{8-x}\Leftrightarrow x=6.\)
Vậy GTLN của M là \(2\sqrt{2}\)
A tương tự.
+) \(B=6\sqrt{x-2}+6\sqrt{5-x}\Leftrightarrow B^2=\left(6\sqrt{x-2}+6\sqrt{5-x}\right)^2\)
\(=36\left(x-2\right)+36\left(5-x\right)+72\sqrt{\left(x-2\right)\left(5-x\right)}\ge108\Rightarrow B\ge6\sqrt{3}\)
+) \(A=B+2\sqrt{5-x}\ge6\sqrt{3}\)
Vậy \(A_{min}=6\sqrt{3}\)khi x=5
+) Đặt \(a=\sqrt{x-2};b=\sqrt{5-x}\)
+) Ta có: \(a^2+b^2=3\)
+) \(\left(a^2+b^2\right)\left(6^2+8^2\right)\ge\left(6a+8b\right)^2\Leftrightarrow\left(6a+8b\right)^2\le300\Rightarrow6a+8b\le10\sqrt{3}\)
Dấu = xảy ra khi \(\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{\sqrt{x-2}}{6}=\frac{\sqrt{5-x}}{8}\Leftrightarrow\frac{x-2}{36}=\frac{5-x}{64}\Leftrightarrow64x-128=180-36x\Leftrightarrow308=100x\)
\(\Leftrightarrow x=3.08\)
Vậy \(A_{max}=10\sqrt{3}\)khi x=3.08