K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

\(A=\left|4x-3\right|+\left|5y+7,5\right|+10\)

Mà \(\left|4x-3\right|\ge0\)với mọi x

\(\left|5y+7,5\right|\ge0\)với mọi y

\(\Rightarrow A\)có GTNN là 10

Để A có GTNN thì :

\(4x-3=0\)                           \(5y+7,5=0\)

\(4x=3\)                                                  \(5y=-7,5\)

\(x=\frac{3}{4}\)                                                     \(y=-1,5\)

28 tháng 9 2018

\(B=\frac{5,8}{\left|2,5-x\right|+5,8}\)

Mà \(\left|2,5-x\right|\ge0\)

\(\Rightarrow\)GTNN \(\left|2,5-x\right|+5,8=5,8\)

Để B có GTLN \(\Rightarrow2,5-x=0\)

\(\Rightarrow x=2,5\)

27 tháng 7 2017

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

27 tháng 7 2017

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)

6 tháng 7 2019

\(a,-\frac{3}{2}-2x+\frac{3}{4}=-2\)

=> \(-\frac{3}{2}+\left(-2x\right)+\frac{3}{4}=-2\)

=> \(\left(-\frac{3}{2}+\frac{3}{4}\right)+\left(-2x\right)=-2\)

=> \(-\frac{3}{4}+\left(-2x\right)=-2\)

=> \(-2x=-2-\left(-\frac{3}{4}\right)=-\frac{5}{4}\)

=> \(x=-\frac{5}{4}:\left(-2\right)=\frac{5}{8}\)

Vậy \(x\in\left\{\frac{5}{8}\right\}\)

\(b,\left(\frac{-2}{3}x-\frac{3}{4}\right)\left(\frac{3}{-2}-\frac{10}{4}\right)=\frac{2}{5}\)

=> \(\left(-\frac{2}{3}x-\frac{3}{4}\right).\left(-4\right)=\frac{2}{5}\)

=> \(-\frac{2}{3}x-\frac{3}{4}=\frac{2}{5}:\left(-4\right)=-\frac{1}{10}\)

=> \(-\frac{2}{3}x=-\frac{1}{10}+\frac{3}{4}=\frac{13}{20}\)

=> \(x=\frac{13}{20}:\left(-\frac{2}{3}\right)=-\frac{39}{40}\)

Vậy \(x\in\left\{-\frac{39}{40}\right\}\)

\(c,\frac{x}{2}-\left(\frac{3x}{5}-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)

=> \(\frac{x}{2}-\frac{3x}{5}+\frac{13}{5}=-\frac{7}{5}-\frac{7}{10}x\)

=> \(10.\frac{x}{2}-10.\frac{3x}{5}+10.\frac{13}{5}=10.\frac{-7}{5}-10.\frac{7}{10}x\)

( chiệt tiêu )

=> \(5x-6x+26=-14-7x\)

=> \(-x+26=-14-7x\)

=> \(-x+7x=-14-26\)

=> \(6x=-40\)

=> \(x=-40:6=\frac{20}{3}\)

Vậy \(x\in\left\{\frac{20}{3}\right\}\)

\(d,\frac{2x-3}{3}+\frac{-3}{2}=\frac{5-3x}{6}-\frac{1}{3}\)

=> \(6.\frac{2x-3}{3}+6.\frac{-3}{2}=6.\frac{5-3x}{6}-6.\frac{1}{3}\)

( chiệt tiêu )

=> \(2\left(2x-3\right)-9=5-3x-2\)

=> \(4x-6-9=3-3x\)

=> \(4x-15=3-3x\)

=> \(4x+3x=3+15\)

=> \(7x=18\)

=> \(x=18:7=\frac{18}{7}\)

Vậy \(x\in\left\{\frac{18}{7}\right\}\)

\(e,\frac{2}{3x}-\frac{3}{12}=\frac{4}{x}-\left(\frac{7}{x}.2\right)\)

ĐKXĐ : \(x\ne0\)

=> \(\frac{2}{3x}-\frac{1}{4}=\frac{4}{x}-\frac{14}{x}\)

=> \(\frac{2}{3x}-\frac{4}{x}+\frac{14}{x}=\frac{1}{4}\)

=> \(\frac{2}{3x}-\frac{12}{3x}+\frac{42}{3x}=\frac{1}{4}\)

=> \(\frac{32}{3x}=\frac{1}{4}\)

=> \(3x=32.4:1=128\)

=> \(x=128:3=\frac{128}{3}\)

Vậy \(x\in\left\{\frac{128}{3}\right\}\)

\(k,\frac{13}{x-1}+\frac{5}{2x-2}-\frac{6}{3x-3}\)

ĐKXĐ :\(x\ne1;\)

=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{6}{3\left(x-1\right)}\)

=> \(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}-\frac{1}{x-1}\)

=> \(\frac{2.13}{2\left(x-1\right)}+\frac{5}{2\left(x-1\right)}-\frac{2.1}{2.\left(x-1\right)}\)

=> \(\frac{26+5-2}{2\left(x-1\right)}\)

=> \(\frac{29}{2\left(x-1\right)}\)

\(m,\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)

=> \(\frac{19}{10}:x-\frac{1}{2}=\frac{3}{2}\)

=> \(\frac{19}{10}:x=\frac{3}{2}+\frac{1}{2}=2\)

=> \(x=\frac{19}{10}:2=\frac{19}{20}\)

Vậy \(x\in\left\{\frac{19}{20}\right\}\)

\(n,\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\left(2x-1\right)=\left(\frac{-3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)

=> \(\frac{233}{286}\left(2x-1\right)=-\frac{233}{572}\)

=> \(2x-1=-\frac{233}{572}:\frac{233}{286}=-\frac{1}{2}\)

=> \(2x=-\frac{1}{2}+1=\frac{1}{2}\)

=> \(x=\frac{1}{2}:2=\frac{1}{4}\)

Vậy \(x\in\left\{\frac{1}{4}\right\}\)

14 tháng 10 2016

e)

=> (x-2) . (x+7) = ( x-1 ) . ( x +4)

=> x2 +7x - 2x -14 = x2 - x + 4x - 4

x2 + 5x - 14 = x2 + 3x - 4

=> 5x - 14  = 3x - 4

=> 5x  - 3x = 14-4

=> 2x         = 10 => x = 10 : 2 => x = 5

c)

=>( x-1) . 7 = ( x + 5 ) . 6

=> 7x - 7 = 6x + 30

=> 7x - 6x=  30 + 7

=> x         = 37

13 tháng 10 2016

a,x=\(\frac{5}{2}\)

b,x=\(\frac{13}{176}\)

c,x=37

d, x=\(\frac{12}{5}\)

e, x=5

19 tháng 4 2020

0u9ugggg