Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi biểu thức là a
ta có:
x \(\ge\)0
\(\sqrt{x}-1\) \(\le\)1
=> 2 - \(\sqrt{x}-1-x\)\(\le\)2
GTLN của a là 2. dấu = xảy ra khi:
\(\sqrt{x-1}-x\)= 0
=> x = 0
8: DKXĐ: x-1>=0 và 2-2x>=0
=>x>=1 và x<=1
=>x=1
9: ĐKXĐ: x^2-1>=0 và 4-4x^2>=0
=>x^2>=1 và x^2<=1
=>x^2=1
=>x=1 hoặc x=-1
10: ĐKXĐ: x-1>=0 và 3-x>=0
=>1<=x<=3
A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)
A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)
A = 4
Vậy A không phụ thuộc vào x
Chúc bn học tốt!
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)
\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)
\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)
\(=10\cdot\dfrac{2}{5}=4\)
Bài làm:
Ta có: \(\sqrt{7+\sqrt{2x}}=3+\sqrt{5}\)
\(\Leftrightarrow7+\sqrt{2x}=\left(3+\sqrt{5}\right)^2\)
\(\Leftrightarrow7+\sqrt{2x}=14+6\sqrt{5}\)
\(\Leftrightarrow\sqrt{2x}=7+6\sqrt{5}\)
\(\Leftrightarrow2x=\left(7+6\sqrt{5}\right)^2\)
\(\Leftrightarrow2x=229+84\sqrt{5}\)
\(\Rightarrow x=\frac{229+84\sqrt{5}}{2}\)
a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)
b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)
c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)