K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

cảm ơn

4 tháng 11 2016

gọi biểu thức là a

ta có:

x \(\ge\)0

\(\sqrt{x}-1\) \(\le\)1

=> 2 - \(\sqrt{x}-1-x\)\(\le\)2

GTLN của a là 2. dấu = xảy ra khi:

\(\sqrt{x-1}-x\)= 0

=> x = 0

4 tháng 11 2016

Mình đã thử nhưng sai bạn à!

8: DKXĐ: x-1>=0 và 2-2x>=0

=>x>=1 và x<=1

=>x=1

9: ĐKXĐ: x^2-1>=0 và 4-4x^2>=0

=>x^2>=1 và x^2<=1

=>x^2=1

=>x=1 hoặc x=-1

10: ĐKXĐ: x-1>=0 và 3-x>=0

=>1<=x<=3

28 tháng 7 2021

A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)

A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)

A = 4

Vậy A không phụ thuộc vào x

Chúc bn học tốt!

Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)

\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)

\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)

\(=10\cdot\dfrac{2}{5}=4\)

30 tháng 8 2020

Bài làm:

Ta có: \(\sqrt{7+\sqrt{2x}}=3+\sqrt{5}\)

\(\Leftrightarrow7+\sqrt{2x}=\left(3+\sqrt{5}\right)^2\)

\(\Leftrightarrow7+\sqrt{2x}=14+6\sqrt{5}\)

\(\Leftrightarrow\sqrt{2x}=7+6\sqrt{5}\)

\(\Leftrightarrow2x=\left(7+6\sqrt{5}\right)^2\)

\(\Leftrightarrow2x=229+84\sqrt{5}\)

\(\Rightarrow x=\frac{229+84\sqrt{5}}{2}\)

10 tháng 9 2020

a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)

b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)

c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)