K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

a)

\(A=2x^2-3x+1=2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-2.\frac{9}{16}+1=2\left(x-\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)

Vậy \(MinA=-\frac{1}{8}\Leftrightarrow\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x=\frac{3}{4}\)

b)

\(B=5x^2+y^2+10+4xy-15x-6y\)

\(=\left[\left(2x\right)^2+y^2-3^2+2.2x.y-2.y.3-2.2x.3\right]+\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=\left(2x+y-3\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)

Vậy \(MinB=\frac{27}{4}\Leftrightarrow\hept{\begin{cases}\left(2x+y-3\right)^2=0\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y-3=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}}\)

28 tháng 6 2017

A là -0,125

27 tháng 12 2021

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)

18 tháng 7 2018

\(A=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)

\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)

\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\) có GTNN là \(0\)

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=1\)

18 tháng 7 2018

A = ( 4x^2 + y^2 +9 + 4xy -6y -12x)+(x^2 -2x+1)

   = (2x+y-3)^2 +(x-1)^2

Ta có: (2x+y-3)^2 +(x-1)^2 >=0 với mọi x,y

Dấu "=" xảy ra khi: 2x+y-3 =0 và x-1=0

                             2.1 + y-3 =0 và x=1

                             -1+y=0 và x=1

                             y=1 và x=1

Vậy giá trị nhỏ nhất của A là 0 tại x=1 và y=1

27 tháng 10 2015

phân tich M=(2x+y)2 + (x-1)2 - 6(2x+y) + 2024

   M= ( 2x + y - 3 )2 + ( x- 1 )2 + 2015

M >= 2015

Dấu = xảy ra khi 2x + y - 3 = 0 và x-1 =0

suy ra x = y = 1

vậy GTNN M= 2015 khi và chi khi x=y=1

a) Ta có: \(A=9x^2-12x+10\)

\(=\left(3x\right)^2-2\cdot3x\cdot2+4+6\)

\(=\left(3x-2\right)^2+6\)

Ta có: \(\left(3x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-2\right)^2+6\ge6\forall x\)

Dấu '=' xảy ra khi \(3x-2=0\)

\(\Leftrightarrow3x=2\)

hay \(x=\frac{2}{3}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=9x^2-12x+10\) là 6 khi \(x=\frac{2}{3}\)

3 tháng 11 2017

Phân tích đa thức thành nhân tử có dạng (a+b)2 + c trong đó c là 2013 và vận dụng cách tìm GTNN đã học (Thầy giáo Đặng Trọng Sơn)

7 tháng 11 2017

thầy chỉ hướng dẫn cho e như thế thôi e tự tìm cách giải mới giỏi lên được