K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Phân tích đa thức thành nhân tử có dạng (a+b)2 + c trong đó c là 2013 và vận dụng cách tìm GTNN đã học (Thầy giáo Đặng Trọng Sơn)

7 tháng 11 2017

thầy chỉ hướng dẫn cho e như thế thôi e tự tìm cách giải mới giỏi lên được

27 tháng 10 2015

phân tich M=(2x+y)2 + (x-1)2 - 6(2x+y) + 2024

   M= ( 2x + y - 3 )2 + ( x- 1 )2 + 2015

M >= 2015

Dấu = xảy ra khi 2x + y - 3 = 0 và x-1 =0

suy ra x = y = 1

vậy GTNN M= 2015 khi và chi khi x=y=1

28 tháng 6 2017

a)

\(A=2x^2-3x+1=2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-2.\frac{9}{16}+1=2\left(x-\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)

Vậy \(MinA=-\frac{1}{8}\Leftrightarrow\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x=\frac{3}{4}\)

b)

\(B=5x^2+y^2+10+4xy-15x-6y\)

\(=\left[\left(2x\right)^2+y^2-3^2+2.2x.y-2.y.3-2.2x.3\right]+\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=\left(2x+y-3\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)

Vậy \(MinB=\frac{27}{4}\Leftrightarrow\hept{\begin{cases}\left(2x+y-3\right)^2=0\\\left(x-\frac{3}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y-3=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}}\)

28 tháng 6 2017

A là -0,125

20 tháng 12 2020
Bạn chơi ff ko 😀😀😀
20 tháng 12 2020

A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)

  = (x+2y+3/2)2 + (y+5/2)2 + 15

=> A min = 15

Dấu "=" xảy ra khi y=-5/2 ; x=7/2

18 tháng 7 2018

\(A=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)

\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)

\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\) có GTNN là \(0\)

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=1\)

18 tháng 7 2018

A = ( 4x^2 + y^2 +9 + 4xy -6y -12x)+(x^2 -2x+1)

   = (2x+y-3)^2 +(x-1)^2

Ta có: (2x+y-3)^2 +(x-1)^2 >=0 với mọi x,y

Dấu "=" xảy ra khi: 2x+y-3 =0 và x-1=0

                             2.1 + y-3 =0 và x=1

                             -1+y=0 và x=1

                             y=1 và x=1

Vậy giá trị nhỏ nhất của A là 0 tại x=1 và y=1

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

$A=5x^2+y^2+4xy-2x-2y+2020$

$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$

$=(2x+y)^2-2(2x+y)+x^2+2x+2020$

$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$

$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$

Hay $x=-1; y=3$