K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Ta có : \(\left|x-2001\right|\ge0\forall x\in R\)

             \(\left|x-1\right|\ge0\forall x\in R\)

Nên : \(\left|x-2001\right|+\left|x-1\right|\ge0\forall x\in R\)

=> GTNN của biểu thức là : 0

Mà x ko thể có 2 giá trị 

Nên GTNN của biểu thức A là : 2001 - 1 = 2000 khi x \(\in R\)

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

29 tháng 7 2016

\(A=\left|x-2001\right|+\left|x-1\right|\) 

Xét \(\left|x-2001\right|=0\Rightarrow x=2001\) 

\(\Rightarrow A=2000\)

Xét \(x-1=0\Rightarrow x=1\)

\(\Rightarrow A=2000\)

Vậy \(MinA=2000\) tại \(x=1\) hoặc \(x=2001\)

26 tháng 10 2017

a=/x-2001/+/x-1/

do/x-2001/lớn hơn hoặc bằng 0

   /x-1/      lớn hơn hoặc bằng 0

nên suy ra /x-2001/+/x-1/ lớn hoặc bằng 0

/x-2001/+/x-1/ đạt giá trị nhỏ nhất là 0 

khii\(\hept{\begin{cases}\frac{x-2001=0}{x-1=0}&&\end{cases}}\)

suy ra \(\hept{\begin{cases}x=2001\\x=1\end{cases}}\)

Vậy ................

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2001|+|x-1|=|2001-x|+|x-1|\geq |2001-x+x-1|=2000$

Vậy $A_{\min}=2000$. Giá trị này đạt được khi $(2001-x)(x-1)\geq 0$

$\Leftrightarrow 2001\geq x\geq 1$

8 tháng 5 2016

Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)

Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)

Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)

9 tháng 8 2017

giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0

=> giá trị tuyệt đối x+10 cộng với 2005

sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005

Dấu bằng xảy ra <=> giá trị tuyệt đối x+10  bằng 0

=> x=-10

Vậy Min B = 2005 <=> x=-10

9 tháng 8 2017

i khó hỉu quá bn giải cả 2 câu nhé

14 tháng 7 2016

Ta có :

\(\left|3,4-x\right|\ge0\) với  V  x

\(\Rightarrow\left|3,4-x\right|+5\ge5\)với  V  x

\(\Rightarrow A\ge5\)với  V  x

\(\Rightarrow GTNN\)của \(A=5\) 

Dấu bằng xảy ra khi :

\(\left|3,4-x\right|=0\)

\(\Rightarrow3,4-x=0\)

\(\Rightarrow x=3,4\)

22 tháng 10 2023

A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|

= |x + y - 1|

= |2 - 1|

= 1

Vậy giá trị nhỏ nhất của A là 1

22 tháng 10 2023

\(A=\left|x+1\right|+\left|y-2\right|\)

\(\Rightarrow A\le x+1+y-2\)

\(A\le x+y-1\)

\(A\le4\)

Vậy giá trị nhỏ nhất biểu thức A là 4.