Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị nhỏ nhất của biểu thức: A = giá trị tuyệt đối của x- 2001 + giá trị tuyệt đối của x - 1.
|x-2001|+|x-1|=|x-2001|+|1-x|
BĐT gttđ:|a+b| > |a+b|
áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000
=>Amin=2000
dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000
\(A=\left|x-2001\right|+\left|x-1\right|\)
Xét \(\left|x-2001\right|=0\Rightarrow x=2001\)
\(\Rightarrow A=2000\)
Xét \(x-1=0\Rightarrow x=1\)
\(\Rightarrow A=2000\)
Vậy \(MinA=2000\) tại \(x=1\) hoặc \(x=2001\)
a=/x-2001/+/x-1/
do/x-2001/lớn hơn hoặc bằng 0
/x-1/ lớn hơn hoặc bằng 0
nên suy ra /x-2001/+/x-1/ lớn hoặc bằng 0
/x-2001/+/x-1/ đạt giá trị nhỏ nhất là 0
khii\(\hept{\begin{cases}\frac{x-2001=0}{x-1=0}&&\end{cases}}\)
suy ra \(\hept{\begin{cases}x=2001\\x=1\end{cases}}\)
Vậy ................
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2001|+|x-1|=|2001-x|+|x-1|\geq |2001-x+x-1|=2000$
Vậy $A_{\min}=2000$. Giá trị này đạt được khi $(2001-x)(x-1)\geq 0$
$\Leftrightarrow 2001\geq x\geq 1$
Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)
Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)
Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
Ta có :
\(\left|3,4-x\right|\ge0\) với V x
\(\Rightarrow\left|3,4-x\right|+5\ge5\)với V x
\(\Rightarrow A\ge5\)với V x
\(\Rightarrow GTNN\)của \(A=5\)
Dấu bằng xảy ra khi :
\(\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\)
\(\Rightarrow x=3,4\)
A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|
= |x + y - 1|
= |2 - 1|
= 1
Vậy giá trị nhỏ nhất của A là 1
\(A=\left|x+1\right|+\left|y-2\right|\)
\(\Rightarrow A\le x+1+y-2\)
\(A\le x+y-1\)
\(A\le4\)
Vậy giá trị nhỏ nhất biểu thức A là 4.
Ta có : \(\left|x-2001\right|\ge0\forall x\in R\)
\(\left|x-1\right|\ge0\forall x\in R\)
Nên : \(\left|x-2001\right|+\left|x-1\right|\ge0\forall x\in R\)
=> GTNN của biểu thức là : 0
Mà x ko thể có 2 giá trị
Nên GTNN của biểu thức A là : 2001 - 1 = 2000 khi x \(\in R\)