Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của \(\left|2009^{2007}x\right|+2010\)
Ta có: \(\left|2009^{2007}x\right|\ge0\)
Hiển nhiên \(\left|2009^{2007}x\right|+2010\ge2010\)
Vậy GTNN của \(\left|2009^{2007}x\right|+2010\) là 10
Khi và chỉ khi \(2009^{2007}x=0\Rightarrow x=0\)
Ta có:P=(/x-3/+2)^2+(y+3)+2017
Ta thấy:/x-3/\(\ge\)0
\(\Rightarrow\)/x-3/+2\(\ge\)2
\(\Rightarrow\)(/x-3 +2)\(^2\)\(\ge\)4
y\(\ge\)0
\(\Rightarrow\)y+3\(\ge\)3
Do đó (/x-3/+2)\(^2\)\(\ge\)4+3+2017
=2024
Vậy giá trị nhỏ nhất của P là 2024\(\Leftrightarrow\)+, /x-3/=0
\(\Rightarrow\)x-3=0
x =0+3
x =3
+, y+3=0
y =0-3
y =-3
|20092007x+2010 | \(\ge\) 0 với mọi x
=> GTNN bằng 0 khi 20092007x+2010 = 0 => x = -2010/ 20092007