Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
a, Ta có : \(\left|x+19\right|\ge0\forall x;\left|y-5\right|\ge0\forall y\)
\(\Rightarrow A\ge1890\)Dấu ''='' xảy ra <=> x = -19 ; y = 5
Vậy GTNN A là 1890 <=> x = -19 ; y = 5
b, Ta có : \(-\left(\left|x-7\right|+\left|y+13\right|\right)+1945\le1945\)
hay \(\Rightarrow B\le1945\)
vì \(\left|x-7\right|\ge0\forall x;\left|y+13\right|\ge0\forall y\)
Dấu''='' xảy ra <=> x = 7 ; y = -13
Vậy GTLN B là 1945 <=> x = 7 ; y = -13
a) A=|x+19|+|y-5|+1890
Để A nhỏ nhất thì |x +19| và |y -5| nhỏ nhất
Ta thấy |x +19| và |y -5| ≥ 0 (với ∀ x,y) ⇒ |x +19| + |y -5| + 1890 ≥ 1890
Dấu "=" xảy ra khi x = -19 và y = 5
Vậy GTNN của A là 1890 tại x= -19 và y= 5
b) B=-|x-7| - |y+13|+1945
Ta thấy: -|x-7| và -|y-5| ≤ 0 (với ∀ x,y) ⇒ -|x-7| - |y+13|+1945 ≤ 1945
Dấu "=" xảy ra khi x= 7 và y= 5
Vậy GTLN của B là 1945 tại x= 7 và y= 5
a) Tìm giá trị nhỏ nhất của biểu thức:
A= |x+19|+ |y – 5| + 1890
Vì |x+19| lớn hơn hoặc bằng 0 với mọi x
=> A có GTNN <=> |x+19| nhỏ nhất
=> |x+19| = 0
x+19 = 0
x = 0 - 19
x = -19
Vì |y – 5| lớn hơn hoặc bằng 0 với mọi x
=> A có GTNN <=> |y – 5| nhỏ nhất
=> |y – 5| = 0
y – 5 = 0
y = 0 + 5
y = 5
A= |x+19|+ |y – 5| + 1890
Thay số:
A= |(-19)+19|+ |5 – 5| + 1890
A= |0|+ |0| + 1890
A= 0 + 0 +1890
A = 1890
Vậy GTNN của A là 1890 <=> x = -19
y = 5
a, Ta có : \(A=4-\left|2x+5\right|\le4\)
Dấu ''='' xảy ra khi x = -5/2
Vậy GTLN A là 4 khi x = -5/2
b, Ta có : \(\left|x-1\right|+5\ge5\)
\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)
Dấu ''='' xảy ra khi x = 1
Vậy GTLN B là 1/5 khi x = 1
c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)
Dấu ''='' xảy ra khi x = 2 ; y = -2
Vậy GTLN C là 4 khi x = 2 ; y = -2
ta có |x+19|+|y-5|+1980 >1980
<=>|x+19|+|y-5|>0
dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0
<=>x=-19,y=5
a) \(A=\left|x+19\right|+\left|y-5\right|+1890\)
TA có: \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge}0;\forall x,y\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
Vậy \(A_{min}=1890\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b) \(B=-\left|x-7\right|-\left|y+13\right|+1945\)
Ta có: \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy MAX\(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)