Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, mk làm 3 câu 2 câu còn lại bạn tự làm nhé tương tự thôi
a/ 36 chia hết 2x+1
Suy ra: 2x+1 thuộc ước của 36
2x+1 thuộc (1,2,3,4,6,8,12,36 )
2x thuộc ( 0,1,2,3,5,7,11,35)
Giải ra x=???( cứ chia 2 ở tập hợp trên)
b/ 2x+3/2x+1 = 2x+1+2/2x+1 = 2x+1/2x+1 + 2/2x+1 = 1+ 2/2x+1
Để 2x+3 chia hết 2x+1 thì 2 phải chia hết cho 2x+1
===) 2x+1 thuộc (1,2)
===) x thuộc (0,1/2)
Mà x thuộc N nên x=0
d/ Câu này sai rồi bạn ơi
2x+7 luôn là số lẻ
5x - 1 luôn là số chẵn
Mà số lẻ làm sao chia hết cho số chẵn
e/ Cũng sai luôn
A= |5x - 1| - 3
Ta thấy:\(\left|5x-1\right|\ge0\)
\(\Rightarrow\left|5x-1\right|-3\ge0-3=-3\)
\(\Rightarrow A\ge-3\)
Dấu = khi x=1/5
Vậy...
B= |2x - 7| + 12
Ta thấy: \(\left|2x-7\right|\ge0\)
\(\Rightarrow\left|2x-7\right|+12\ge0+12=12\)
\(\Rightarrow B\ge12\)
Dấu = khi x=7/2
C và D fai là tìm Max
C=-|5 - 3x| + 2005
Ta thấy :\(-\left|5-3x\right|\le0\)
\(\Rightarrow-\left|5-3x\right|+2005\le0+2005=2005\)
\(\Rightarrow C\le2005\)
Dấu = khi x=5/3
Vậy...
D= 29 - |7 + 3x|
Ta thấy:\(-\left|7+3x\right|\le0\)
\(\Rightarrow29-\left|7+3x\right|\le29-0=29\)
\(\Rightarrow D\le29\)
Dấu = khi x=-7/3
Vậy....
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
Trả lời:
A = ( 2x - 7 )4
Ta có: \(\left(2x-7\right)^4\ge0\forall x\)
Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2
Vậy GTNN của A = 0 khi x = 7/2
B = ( x + 1 )10 + ( y - 2 )20 + 7
Ta có: \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1 và y - 2 = 0 <=> y = 2
Vậy GTNN của B = 7 khi x = -1 và y = 2
C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20
Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)
Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5
Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5
D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000
Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)
Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3
Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3
E = ( x - y )50 + ( y - 2 )60 + 3
Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\); \(\left(y-2\right)^{60}\ge0\forall y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)
Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2
Vậy GTNN của E = 3 khi x = y = 2
\(M=\left|3x+1\right|+3x-49\)
\(M=\left|-3x-1\right|+3x-49\ge-3x-1+3x-49\)
\(M\ge-50\)
\(N=\left|x-7\right|+x-20=\left|7-x\right|+x-20\)
\(N\ge7-x+x-20=-13\)
\(C=\left|2x+5\right|+\left|x-1\right|+\left|2x-35\right|\)
\(C=\left|2x+5\right|+\left|35-2x\right|+\left|x-1\right|\)
\(C\ge\left|2x+5+35-2x\right|+\left|x-1\right|=40+\left|x-1\right|\ge40\)