Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:120a chia hết cho 12
36b chia hết cho 12
=>(120a+36b)chia het cho 12
\(Cau2:\)\(5^7+5^6+5^5\)=\(5^5\left(5^2+5+1\right)=5^5\cdot21\)
=>\(5^7+5^6+5^5chiahetcho21\)
C1: Vì 120 chia hết cho 12 nên 120a chia hết cho 12. (1)
Vì 36 chia hết cho 12 nên 36b chia hết cho 12. (2)
Từ (1) và (2) => (120a + 36b) chia hết cho 12
72006 = 72.(74)501
Vì (74)501 có chữ số tận cùng bằng 1
Nên 72006 có chữ số tận cùng bằng 9
1. 53 = 5.5.5 = 125
2. 27 = 2.2.2.2.2.2.2 = 128
3. 44 = 4.4.4.4 = 256
4. 73 = 7.7.7 = 343
6. 35 = 243
7. 26 = 64
8. 34 = 81
9. 83 = 512
11. 132 = 169
12. 112 = 121
13. 142 = 196
14. 152 = 225
16. 172 = 289
17. 182 = 324
18. 192 = 361
19. 202 = 400
21. 104 = 10000
22. 105 = 100000
23. 106 = 1000000
24. 107 = 10000000
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
Ta có : A = 30 + 31 + 32 + 33 + .... + 350
=> 3A = 31 + 32 + 33 + 34 + ... + 351
Khi đó 3A - A = (31 + 32 + 33 + 34 + ... + 351) - (30 + 31 + 32 + 33 + .... + 350)
=> 2A = 351 - 30
=> A = \(\frac{3^{51}-1}{2}\)
Khi đó A = \(\frac{3^{51}-1}{2}=\frac{3^3.3^{48}-1}{2}=\frac{27.\left(3^4\right)^{12}-1}{2}=\frac{27.\left(...1\right)^{12}-1}{2}\)
\(=\frac{\left(...7\right)-1}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A tận cùng là 3
Đồng dư đi bạn :D Vd 1 câu:
Câu 1:
\(\text{Ta có:}3^2\equiv-1\left(mod10\right)\Rightarrow3^{20}\equiv\left(-1\right)^{10}\equiv1\left(mod10\right)\Rightarrow3^{21}\equiv3\left(mod10\right)\) (1)
Lại có \(2^5\equiv2\left(mod10\right)\Rightarrow\left(2^5\right)^3\equiv2^3\text{hay }2^{15}\equiv8\left(mod10\right)\Rightarrow2^{18}\equiv8.2^3\equiv4\left(Mod10\right)\)(2)
Từ (1) và (2) \(3^{21}+2^{18}\equiv3+4\equiv7\left(mod10\right)\)
hay là muốn dùng cách thông thường? cũng dài dòng ko kém (nếu phải giải thích) Đoàn Võ Thanh Trà